Enter a problem...
Trigonometry Examples
sin(4x)cos(x)-sin(x)cos(4x)=-√22sin(4x)cos(x)−sin(x)cos(4x)=−√22 , [0,2π)[0,2π)
Step 1
Graph each side of the equation. The solution is the x-value of the point of intersection.
x=5π12+2πn3,7π12+2πn3x=5π12+2πn3,7π12+2πn3, for any integer nn
Step 2
Step 2.1
Plug in 00 for nn and simplify to see if the solution is contained in [0,2π)[0,2π).
Step 2.1.1
Plug in 00 for nn.
5π12+2π(0)35π12+2π(0)3
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Cancel the common factor of 00 and 33.
Step 2.1.2.1.1.1
Factor 33 out of 2π(0)2π(0).
5π12+3(2π⋅(0))35π12+3(2π⋅(0))3
Step 2.1.2.1.1.2
Cancel the common factors.
Step 2.1.2.1.1.2.1
Factor 33 out of 33.
5π12+3(2π⋅(0))3(1)5π12+3(2π⋅(0))3(1)
Step 2.1.2.1.1.2.2
Cancel the common factor.
5π12+3(2π⋅(0))3⋅1
Step 2.1.2.1.1.2.3
Rewrite the expression.
5π12+2π⋅(0)1
Step 2.1.2.1.1.2.4
Divide 2π⋅(0) by 1.
5π12+2π⋅(0)
5π12+2π⋅(0)
5π12+2π⋅(0)
Step 2.1.2.1.2
Multiply 2π(0).
Step 2.1.2.1.2.1
Multiply 0 by 2.
5π12+0π
Step 2.1.2.1.2.2
Multiply 0 by π.
5π12+0
5π12+0
5π12+0
Step 2.1.2.2
Add 5π12 and 0.
5π12
5π12
Step 2.1.3
The interval [0,2π) contains 5π12.
x=5π12
x=5π12
Step 2.2
Plug in 0 for n and simplify to see if the solution is contained in [0,2π).
Step 2.2.1
Plug in 0 for n.
7π12+2π(0)3
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Cancel the common factor of 0 and 3.
Step 2.2.2.1.1.1
Factor 3 out of 2π(0).
7π12+3(2π⋅(0))3
Step 2.2.2.1.1.2
Cancel the common factors.
Step 2.2.2.1.1.2.1
Factor 3 out of 3.
7π12+3(2π⋅(0))3(1)
Step 2.2.2.1.1.2.2
Cancel the common factor.
7π12+3(2π⋅(0))3⋅1
Step 2.2.2.1.1.2.3
Rewrite the expression.
7π12+2π⋅(0)1
Step 2.2.2.1.1.2.4
Divide 2π⋅(0) by 1.
7π12+2π⋅(0)
7π12+2π⋅(0)
7π12+2π⋅(0)
Step 2.2.2.1.2
Multiply 2π(0).
Step 2.2.2.1.2.1
Multiply 0 by 2.
7π12+0π
Step 2.2.2.1.2.2
Multiply 0 by π.
7π12+0
7π12+0
7π12+0
Step 2.2.2.2
Add 7π12 and 0.
7π12
7π12
Step 2.2.3
The interval [0,2π) contains 7π12.
x=5π12,7π12
x=5π12,7π12
Step 2.3
Plug in 1 for n and simplify to see if the solution is contained in [0,2π).
Step 2.3.1
Plug in 1 for n.
5π12+2π(1)3
Step 2.3.2
Simplify.
Step 2.3.2.1
Multiply 2 by 1.
5π12+2π3
Step 2.3.2.2
To write 2π3 as a fraction with a common denominator, multiply by 44.
5π12+2π3⋅44
Step 2.3.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Step 2.3.2.3.1
Multiply 2π3 by 44.
5π12+2π⋅43⋅4
Step 2.3.2.3.2
Multiply 3 by 4.
5π12+2π⋅412
5π12+2π⋅412
Step 2.3.2.4
Combine the numerators over the common denominator.
5π+2π⋅412
Step 2.3.2.5
Simplify the numerator.
Step 2.3.2.5.1
Multiply 4 by 2.
5π+8π12
Step 2.3.2.5.2
Add 5π and 8π.
13π12
13π12
13π12
Step 2.3.3
The interval [0,2π) contains 13π12.
x=5π12,7π12,13π12
x=5π12,7π12,13π12
Step 2.4
Plug in 1 for n and simplify to see if the solution is contained in [0,2π).
Step 2.4.1
Plug in 1 for n.
7π12+2π(1)3
Step 2.4.2
Simplify.
Step 2.4.2.1
Multiply 2 by 1.
7π12+2π3
Step 2.4.2.2
To write 2π3 as a fraction with a common denominator, multiply by 44.
7π12+2π3⋅44
Step 2.4.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Step 2.4.2.3.1
Multiply 2π3 by 44.
7π12+2π⋅43⋅4
Step 2.4.2.3.2
Multiply 3 by 4.
7π12+2π⋅412
7π12+2π⋅412
Step 2.4.2.4
Combine the numerators over the common denominator.
7π+2π⋅412
Step 2.4.2.5
Simplify the numerator.
Step 2.4.2.5.1
Multiply 4 by 2.
7π+8π12
Step 2.4.2.5.2
Add 7π and 8π.
15π12
15π12
Step 2.4.2.6
Cancel the common factor of 15 and 12.
Step 2.4.2.6.1
Factor 3 out of 15π.
3(5π)12
Step 2.4.2.6.2
Cancel the common factors.
Step 2.4.2.6.2.1
Factor 3 out of 12.
3(5π)3(4)
Step 2.4.2.6.2.2
Cancel the common factor.
3(5π)3⋅4
Step 2.4.2.6.2.3
Rewrite the expression.
5π4
5π4
5π4
5π4
Step 2.4.3
The interval [0,2π) contains 5π4.
x=5π12,7π12,13π12,5π4
x=5π12,7π12,13π12,5π4
Step 2.5
Plug in 2 for n and simplify to see if the solution is contained in [0,2π).
Step 2.5.1
Plug in 2 for n.
5π12+2π(2)3
Step 2.5.2
Simplify.
Step 2.5.2.1
Multiply 2 by 2.
5π12+4π3
Step 2.5.2.2
To write 4π3 as a fraction with a common denominator, multiply by 44.
5π12+4π3⋅44
Step 2.5.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Step 2.5.2.3.1
Multiply 4π3 by 44.
5π12+4π⋅43⋅4
Step 2.5.2.3.2
Multiply 3 by 4.
5π12+4π⋅412
5π12+4π⋅412
Step 2.5.2.4
Combine the numerators over the common denominator.
5π+4π⋅412
Step 2.5.2.5
Simplify the numerator.
Step 2.5.2.5.1
Multiply 4 by 4.
5π+16π12
Step 2.5.2.5.2
Add 5π and 16π.
21π12
21π12
Step 2.5.2.6
Cancel the common factor of 21 and 12.
Step 2.5.2.6.1
Factor 3 out of 21π.
3(7π)12
Step 2.5.2.6.2
Cancel the common factors.
Step 2.5.2.6.2.1
Factor 3 out of 12.
3(7π)3(4)
Step 2.5.2.6.2.2
Cancel the common factor.
3(7π)3⋅4
Step 2.5.2.6.2.3
Rewrite the expression.
7π4
7π4
7π4
7π4
Step 2.5.3
The interval [0,2π) contains 7π4.
x=5π12,7π12,13π12,5π4,7π4
x=5π12,7π12,13π12,5π4,7π4
Step 2.6
Plug in 2 for n and simplify to see if the solution is contained in [0,2π).
Step 2.6.1
Plug in 2 for n.
7π12+2π(2)3
Step 2.6.2
Simplify.
Step 2.6.2.1
Multiply 2 by 2.
7π12+4π3
Step 2.6.2.2
To write 4π3 as a fraction with a common denominator, multiply by 44.
7π12+4π3⋅44
Step 2.6.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Step 2.6.2.3.1
Multiply 4π3 by 44.
7π12+4π⋅43⋅4
Step 2.6.2.3.2
Multiply 3 by 4.
7π12+4π⋅412
7π12+4π⋅412
Step 2.6.2.4
Combine the numerators over the common denominator.
7π+4π⋅412
Step 2.6.2.5
Simplify the numerator.
Step 2.6.2.5.1
Multiply 4 by 4.
7π+16π12
Step 2.6.2.5.2
Add 7π and 16π.
23π12
23π12
23π12
Step 2.6.3
The interval [0,2π) contains 23π12.
x=5π12,7π12,13π12,5π4,7π4,23π12
x=5π12,7π12,13π12,5π4,7π4,23π12
x=5π12,7π12,13π12,5π4,7π4,23π12
Step 3