Trigonometry Examples

Solve over the Interval sin(4x)cos(x)-sin(x)cos(4x)=-( square root of 2)/2 , [0,2pi)
sin(4x)cos(x)-sin(x)cos(4x)=-22sin(4x)cos(x)sin(x)cos(4x)=22 , [0,2π)[0,2π)
Step 1
Graph each side of the equation. The solution is the x-value of the point of intersection.
x=5π12+2πn3,7π12+2πn3x=5π12+2πn3,7π12+2πn3, for any integer nn
Step 2
Find the values of nn that produce a value within the interval [0,2π)[0,2π).
Tap for more steps...
Step 2.1
Plug in 00 for nn and simplify to see if the solution is contained in [0,2π)[0,2π).
Tap for more steps...
Step 2.1.1
Plug in 00 for nn.
5π12+2π(0)35π12+2π(0)3
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Cancel the common factor of 00 and 33.
Tap for more steps...
Step 2.1.2.1.1.1
Factor 33 out of 2π(0)2π(0).
5π12+3(2π(0))35π12+3(2π(0))3
Step 2.1.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 2.1.2.1.1.2.1
Factor 33 out of 33.
5π12+3(2π(0))3(1)5π12+3(2π(0))3(1)
Step 2.1.2.1.1.2.2
Cancel the common factor.
5π12+3(2π(0))31
Step 2.1.2.1.1.2.3
Rewrite the expression.
5π12+2π(0)1
Step 2.1.2.1.1.2.4
Divide 2π(0) by 1.
5π12+2π(0)
5π12+2π(0)
5π12+2π(0)
Step 2.1.2.1.2
Multiply 2π(0).
Tap for more steps...
Step 2.1.2.1.2.1
Multiply 0 by 2.
5π12+0π
Step 2.1.2.1.2.2
Multiply 0 by π.
5π12+0
5π12+0
5π12+0
Step 2.1.2.2
Add 5π12 and 0.
5π12
5π12
Step 2.1.3
The interval [0,2π) contains 5π12.
x=5π12
x=5π12
Step 2.2
Plug in 0 for n and simplify to see if the solution is contained in [0,2π).
Tap for more steps...
Step 2.2.1
Plug in 0 for n.
7π12+2π(0)3
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Cancel the common factor of 0 and 3.
Tap for more steps...
Step 2.2.2.1.1.1
Factor 3 out of 2π(0).
7π12+3(2π(0))3
Step 2.2.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 2.2.2.1.1.2.1
Factor 3 out of 3.
7π12+3(2π(0))3(1)
Step 2.2.2.1.1.2.2
Cancel the common factor.
7π12+3(2π(0))31
Step 2.2.2.1.1.2.3
Rewrite the expression.
7π12+2π(0)1
Step 2.2.2.1.1.2.4
Divide 2π(0) by 1.
7π12+2π(0)
7π12+2π(0)
7π12+2π(0)
Step 2.2.2.1.2
Multiply 2π(0).
Tap for more steps...
Step 2.2.2.1.2.1
Multiply 0 by 2.
7π12+0π
Step 2.2.2.1.2.2
Multiply 0 by π.
7π12+0
7π12+0
7π12+0
Step 2.2.2.2
Add 7π12 and 0.
7π12
7π12
Step 2.2.3
The interval [0,2π) contains 7π12.
x=5π12,7π12
x=5π12,7π12
Step 2.3
Plug in 1 for n and simplify to see if the solution is contained in [0,2π).
Tap for more steps...
Step 2.3.1
Plug in 1 for n.
5π12+2π(1)3
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Multiply 2 by 1.
5π12+2π3
Step 2.3.2.2
To write 2π3 as a fraction with a common denominator, multiply by 44.
5π12+2π344
Step 2.3.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.3.2.3.1
Multiply 2π3 by 44.
5π12+2π434
Step 2.3.2.3.2
Multiply 3 by 4.
5π12+2π412
5π12+2π412
Step 2.3.2.4
Combine the numerators over the common denominator.
5π+2π412
Step 2.3.2.5
Simplify the numerator.
Tap for more steps...
Step 2.3.2.5.1
Multiply 4 by 2.
5π+8π12
Step 2.3.2.5.2
Add 5π and 8π.
13π12
13π12
13π12
Step 2.3.3
The interval [0,2π) contains 13π12.
x=5π12,7π12,13π12
x=5π12,7π12,13π12
Step 2.4
Plug in 1 for n and simplify to see if the solution is contained in [0,2π).
Tap for more steps...
Step 2.4.1
Plug in 1 for n.
7π12+2π(1)3
Step 2.4.2
Simplify.
Tap for more steps...
Step 2.4.2.1
Multiply 2 by 1.
7π12+2π3
Step 2.4.2.2
To write 2π3 as a fraction with a common denominator, multiply by 44.
7π12+2π344
Step 2.4.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.4.2.3.1
Multiply 2π3 by 44.
7π12+2π434
Step 2.4.2.3.2
Multiply 3 by 4.
7π12+2π412
7π12+2π412
Step 2.4.2.4
Combine the numerators over the common denominator.
7π+2π412
Step 2.4.2.5
Simplify the numerator.
Tap for more steps...
Step 2.4.2.5.1
Multiply 4 by 2.
7π+8π12
Step 2.4.2.5.2
Add 7π and 8π.
15π12
15π12
Step 2.4.2.6
Cancel the common factor of 15 and 12.
Tap for more steps...
Step 2.4.2.6.1
Factor 3 out of 15π.
3(5π)12
Step 2.4.2.6.2
Cancel the common factors.
Tap for more steps...
Step 2.4.2.6.2.1
Factor 3 out of 12.
3(5π)3(4)
Step 2.4.2.6.2.2
Cancel the common factor.
3(5π)34
Step 2.4.2.6.2.3
Rewrite the expression.
5π4
5π4
5π4
5π4
Step 2.4.3
The interval [0,2π) contains 5π4.
x=5π12,7π12,13π12,5π4
x=5π12,7π12,13π12,5π4
Step 2.5
Plug in 2 for n and simplify to see if the solution is contained in [0,2π).
Tap for more steps...
Step 2.5.1
Plug in 2 for n.
5π12+2π(2)3
Step 2.5.2
Simplify.
Tap for more steps...
Step 2.5.2.1
Multiply 2 by 2.
5π12+4π3
Step 2.5.2.2
To write 4π3 as a fraction with a common denominator, multiply by 44.
5π12+4π344
Step 2.5.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.5.2.3.1
Multiply 4π3 by 44.
5π12+4π434
Step 2.5.2.3.2
Multiply 3 by 4.
5π12+4π412
5π12+4π412
Step 2.5.2.4
Combine the numerators over the common denominator.
5π+4π412
Step 2.5.2.5
Simplify the numerator.
Tap for more steps...
Step 2.5.2.5.1
Multiply 4 by 4.
5π+16π12
Step 2.5.2.5.2
Add 5π and 16π.
21π12
21π12
Step 2.5.2.6
Cancel the common factor of 21 and 12.
Tap for more steps...
Step 2.5.2.6.1
Factor 3 out of 21π.
3(7π)12
Step 2.5.2.6.2
Cancel the common factors.
Tap for more steps...
Step 2.5.2.6.2.1
Factor 3 out of 12.
3(7π)3(4)
Step 2.5.2.6.2.2
Cancel the common factor.
3(7π)34
Step 2.5.2.6.2.3
Rewrite the expression.
7π4
7π4
7π4
7π4
Step 2.5.3
The interval [0,2π) contains 7π4.
x=5π12,7π12,13π12,5π4,7π4
x=5π12,7π12,13π12,5π4,7π4
Step 2.6
Plug in 2 for n and simplify to see if the solution is contained in [0,2π).
Tap for more steps...
Step 2.6.1
Plug in 2 for n.
7π12+2π(2)3
Step 2.6.2
Simplify.
Tap for more steps...
Step 2.6.2.1
Multiply 2 by 2.
7π12+4π3
Step 2.6.2.2
To write 4π3 as a fraction with a common denominator, multiply by 44.
7π12+4π344
Step 2.6.2.3
Write each expression with a common denominator of 12, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.6.2.3.1
Multiply 4π3 by 44.
7π12+4π434
Step 2.6.2.3.2
Multiply 3 by 4.
7π12+4π412
7π12+4π412
Step 2.6.2.4
Combine the numerators over the common denominator.
7π+4π412
Step 2.6.2.5
Simplify the numerator.
Tap for more steps...
Step 2.6.2.5.1
Multiply 4 by 4.
7π+16π12
Step 2.6.2.5.2
Add 7π and 16π.
23π12
23π12
23π12
Step 2.6.3
The interval [0,2π) contains 23π12.
x=5π12,7π12,13π12,5π4,7π4,23π12
x=5π12,7π12,13π12,5π4,7π4,23π12
x=5π12,7π12,13π12,5π4,7π4,23π12
Step 3
 [x2  12  π  xdx ]