Enter a problem...
Trigonometry Examples
cos(B)=(7)2+(10.35513349)2−(12)22(7)(10.35513349)
Step 1
Step 1.1
Simplify the numerator.
Step 1.1.1
Raise 7 to the power of 2.
cos(B)=49+10.355133492−1222(7)⋅10.35513349
Step 1.1.2
Raise 10.35513349 to the power of 2.
cos(B)=49+107.22878959−1222(7)⋅10.35513349
Step 1.1.3
Raise 12 to the power of 2.
cos(B)=49+107.22878959−1⋅1442(7)⋅10.35513349
Step 1.1.4
Multiply −1 by 144.
cos(B)=49+107.22878959−1442(7)⋅10.35513349
Step 1.1.5
Add 49 and 107.22878959.
cos(B)=156.22878959−1442(7)⋅10.35513349
Step 1.1.6
Subtract 144 from 156.22878959.
cos(B)=12.228789592(7)⋅10.35513349
cos(B)=12.228789592(7)⋅10.35513349
Step 1.2
Simplify the denominator.
Step 1.2.1
Multiply 2 by 7.
cos(B)=12.2287895914⋅10.35513349
Step 1.2.2
Multiply 14 by 10.35513349.
cos(B)=12.22878959144.97186886
cos(B)=12.22878959144.97186886
Step 1.3
Divide 12.22878959 by 144.97186886.
cos(B)=0.08435284
cos(B)=0.08435284
Step 2
Take the inverse cosine of both sides of the equation to extract B from inside the cosine.
B=arccos(0.08435284)
Step 3
Step 3.1
Evaluate arccos(0.08435284).
B=1.48634312
B=1.48634312
Step 4
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the fourth quadrant.
B=2(3.14159265)−1.48634312
Step 5
Step 5.1
Multiply 2 by 3.14159265.
B=6.2831853−1.48634312
Step 5.2
Subtract 1.48634312 from 6.2831853.
B=4.79684218
B=4.79684218
Step 6
Step 6.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 6.2
Replace b with 1 in the formula for period.
2π|1|
Step 6.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
2π1
Step 6.4
Divide 2π by 1.
2π
2π
Step 7
The period of the cos(B) function is 2π so values will repeat every 2π radians in both directions.
B=1.48634312+2πn,4.79684218+2πn, for any integer n