Enter a problem...
Trigonometry Examples
y=sin(12)(x-c)y=sin(12)(x−c)
Step 1
Rewrite the equation as sin(12)(x-c)=ysin(12)(x−c)=y.
sin(12)(x-c)=ysin(12)(x−c)=y
Step 2
Step 2.1
Divide each term in sin(12)(x-c)=ysin(12)(x−c)=y by sin(12)sin(12).
sin(12)(x-c)sin(12)=ysin(12)sin(12)(x−c)sin(12)=ysin(12)
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of sin(12)sin(12).
Step 2.2.1.1
Cancel the common factor.
sin(12)(x-c)sin(12)=ysin(12)
Step 2.2.1.2
Divide x-c by 1.
x-c=ysin(12)
x-c=ysin(12)
x-c=ysin(12)
Step 2.3
Simplify the right side.
Step 2.3.1
Separate fractions.
x-c=y1⋅1sin(12)
Step 2.3.2
Convert from 1sin(12) to csc(12).
x-c=y1csc(12)
Step 2.3.3
Divide y by 1.
x-c=ycsc(12)
Step 2.3.4
Evaluate csc(12).
x-c=y⋅2.08582964
Step 2.3.5
Move 2.08582964 to the left of y.
x-c=2.08582964y
x-c=2.08582964y
x-c=2.08582964y
Step 3
Subtract x from both sides of the equation.
-c=2.08582964y-x
Step 4
Step 4.1
Divide each term in -c=2.08582964y-x by -1.
-c-1=2.08582964y-1+-x-1
Step 4.2
Simplify the left side.
Step 4.2.1
Dividing two negative values results in a positive value.
c1=2.08582964y-1+-x-1
Step 4.2.2
Divide c by 1.
c=2.08582964y-1+-x-1
c=2.08582964y-1+-x-1
Step 4.3
Simplify the right side.
Step 4.3.1
Simplify each term.
Step 4.3.1.1
Move the negative one from the denominator of 2.08582964y-1.
c=-1⋅(2.08582964y)+-x-1
Step 4.3.1.2
Rewrite -1⋅(2.08582964y) as -(2.08582964y).
c=-(2.08582964y)+-x-1
Step 4.3.1.3
Multiply 2.08582964 by -1.
c=-2.08582964y+-x-1
Step 4.3.1.4
Dividing two negative values results in a positive value.
c=-2.08582964y+x1
Step 4.3.1.5
Divide x by 1.
c=-2.08582964y+x
c=-2.08582964y+x
c=-2.08582964y+x
c=-2.08582964y+x