Enter a problem...
Trigonometry Examples
T=2π√LgT=2π√Lg
Step 1
Rewrite the equation as 2π√Lg=T2π√Lg=T.
2π√Lg=T2π√Lg=T
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
(2π√Lg)2=T2(2π√Lg)2=T2
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √Lg√Lg as (Lg)12(Lg)12.
(2π(Lg)12)2=T2(2π(Lg)12)2=T2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify (2π(Lg)12)2(2π(Lg)12)2.
Step 3.2.1.1
Apply the product rule to LgLg.
(2πL12g12)2=T2(2πL12g12)2=T2
Step 3.2.1.2
Multiply 2πL12g122πL12g12.
Step 3.2.1.2.1
Combine L12g12L12g12 and 22.
(L12⋅2g12π)2=T2(L12⋅2g12π)2=T2
Step 3.2.1.2.2
Combine L12⋅2g12L12⋅2g12 and ππ.
(L12⋅2πg12)2=T2(L12⋅2πg12)2=T2
(L12⋅2πg12)2=T2(L12⋅2πg12)2=T2
Step 3.2.1.3
Move 22 to the left of L12L12.
(2⋅L12πg12)2=T2(2⋅L12πg12)2=T2
Step 3.2.1.4
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 3.2.1.4.1
Apply the product rule to 2L12πg122L12πg12.
(2L12π)2(g12)2=T2(2L12π)2(g12)2=T2
Step 3.2.1.4.2
Apply the product rule to 2L12π2L12π.
(2L12)2π2(g12)2=T2(2L12)2π2(g12)2=T2
Step 3.2.1.4.3
Apply the product rule to 2L122L12.
22(L12)2π2(g12)2=T222(L12)2π2(g12)2=T2
22(L12)2π2(g12)2=T222(L12)2π2(g12)2=T2
Step 3.2.1.5
Simplify the numerator.
Step 3.2.1.5.1
Raise 22 to the power of 22.
4(L12)2π2(g12)2=T24(L12)2π2(g12)2=T2
Step 3.2.1.5.2
Multiply the exponents in (L12)2(L12)2.
Step 3.2.1.5.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
4L12⋅2π2(g12)2=T24L12⋅2π2(g12)2=T2
Step 3.2.1.5.2.2
Cancel the common factor of 22.
Step 3.2.1.5.2.2.1
Cancel the common factor.
4L12⋅2π2(g12)2=T2
Step 3.2.1.5.2.2.2
Rewrite the expression.
4L1π2(g12)2=T2
4L1π2(g12)2=T2
4L1π2(g12)2=T2
Step 3.2.1.5.3
Simplify.
4Lπ2(g12)2=T2
4Lπ2(g12)2=T2
Step 3.2.1.6
Simplify the denominator.
Step 3.2.1.6.1
Multiply the exponents in (g12)2.
Step 3.2.1.6.1.1
Apply the power rule and multiply exponents, (am)n=amn.
4Lπ2g12⋅2=T2
Step 3.2.1.6.1.2
Cancel the common factor of 2.
Step 3.2.1.6.1.2.1
Cancel the common factor.
4Lπ2g12⋅2=T2
Step 3.2.1.6.1.2.2
Rewrite the expression.
4Lπ2g1=T2
4Lπ2g1=T2
4Lπ2g1=T2
Step 3.2.1.6.2
Simplify.
4Lπ2g=T2
4Lπ2g=T2
4Lπ2g=T2
4Lπ2g=T2
4Lπ2g=T2
Step 4
Step 4.1
Multiply both sides by g.
4Lπ2gg=T2g
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of g.
Step 4.2.1.1
Cancel the common factor.
4Lπ2gg=T2g
Step 4.2.1.2
Rewrite the expression.
4Lπ2=T2g
4Lπ2=T2g
4Lπ2=T2g
Step 4.3
Divide each term in 4Lπ2=T2g by 4π2 and simplify.
Step 4.3.1
Divide each term in 4Lπ2=T2g by 4π2.
4Lπ24π2=T2g4π2
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of 4.
Step 4.3.2.1.1
Cancel the common factor.
4Lπ24π2=T2g4π2
Step 4.3.2.1.2
Rewrite the expression.
Lπ2π2=T2g4π2
Lπ2π2=T2g4π2
Step 4.3.2.2
Cancel the common factor of π2.
Step 4.3.2.2.1
Cancel the common factor.
Lπ2π2=T2g4π2
Step 4.3.2.2.2
Divide L by 1.
L=T2g4π2
L=T2g4π2
L=T2g4π2
L=T2g4π2
L=T2g4π2