Trigonometry Examples

Describe the Transformation y=-tan(1/10x)+4
y=-tan(110x)+4y=tan(110x)+4
Step 1
The parent function is the simplest form of the type of function given.
y=tan(x)y=tan(x)
Step 2
Combine 110110 and xx.
y=-tan(x10)+4y=tan(x10)+4
Step 3
Assume that y=tan(x)y=tan(x) is f(x)=tan(x)f(x)=tan(x) and y=-tan(110x)+4y=tan(110x)+4 is g(x)=-tan(x10)+4g(x)=tan(x10)+4.
f(x)=tan(x)f(x)=tan(x)
g(x)=-tan(x10)+4g(x)=tan(x10)+4
Step 4
Use the form atan(bx-c)+datan(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=-1a=1
b=110b=110
c=0c=0
d=4d=4
Step 5
Since the graph of the function tantan does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 6
Find the period using the formula π|b|π|b|.
Tap for more steps...
Step 6.1
Find the period of -tan(x10)tan(x10).
Tap for more steps...
Step 6.1.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 6.1.2
Replace bb with 110110 in the formula for period.
π|110|π110
Step 6.1.3
110110 is approximately 0.10.1 which is positive so remove the absolute value
π110π110
Step 6.1.4
Multiply the numerator by the reciprocal of the denominator.
π10π10
Step 6.1.5
Move 1010 to the left of ππ.
10π10π
10π10π
Step 6.2
Find the period of 44.
Tap for more steps...
Step 6.2.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 6.2.2
Replace bb with 110110 in the formula for period.
π|110|π110
Step 6.2.3
110110 is approximately 0.10.1 which is positive so remove the absolute value
π110π110
Step 6.2.4
Multiply the numerator by the reciprocal of the denominator.
π10π10
Step 6.2.5
Move 1010 to the left of ππ.
10π10π
10π10π
Step 6.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
10π10π
10π10π
Step 7
Find the phase shift using the formula cbcb.
Tap for more steps...
Step 7.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 7.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: 01100110
Step 7.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 010010
Step 7.4
Multiply 00 by 1010.
Phase Shift: 00
Phase Shift: 00
Step 8
List the properties of the trigonometric function.
Amplitude: None
Period: 10π10π
Phase Shift: None
Vertical Shift: 44
Step 9
 [x2  12  π  xdx ]  x2  12  π  xdx