Enter a problem...
Trigonometry Examples
y=-tan(110x)+4y=−tan(110x)+4
Step 1
The parent function is the simplest form of the type of function given.
y=tan(x)y=tan(x)
Step 2
Combine 110110 and xx.
y=-tan(x10)+4y=−tan(x10)+4
Step 3
Assume that y=tan(x)y=tan(x) is f(x)=tan(x)f(x)=tan(x) and y=-tan(110x)+4y=−tan(110x)+4 is g(x)=-tan(x10)+4g(x)=−tan(x10)+4.
f(x)=tan(x)f(x)=tan(x)
g(x)=-tan(x10)+4g(x)=−tan(x10)+4
Step 4
Use the form atan(bx-c)+datan(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=-1a=−1
b=110b=110
c=0c=0
d=4d=4
Step 5
Since the graph of the function tantan does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 6
Step 6.1
Find the period of -tan(x10)−tan(x10).
Step 6.1.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 6.1.2
Replace bb with 110110 in the formula for period.
π|110|π∣∣110∣∣
Step 6.1.3
110110 is approximately 0.10.1 which is positive so remove the absolute value
π110π110
Step 6.1.4
Multiply the numerator by the reciprocal of the denominator.
π⋅10π⋅10
Step 6.1.5
Move 1010 to the left of ππ.
10π10π
10π10π
Step 6.2
Find the period of 44.
Step 6.2.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 6.2.2
Replace bb with 110110 in the formula for period.
π|110|π∣∣110∣∣
Step 6.2.3
110110 is approximately 0.10.1 which is positive so remove the absolute value
π110π110
Step 6.2.4
Multiply the numerator by the reciprocal of the denominator.
π⋅10π⋅10
Step 6.2.5
Move 1010 to the left of ππ.
10π10π
10π10π
Step 6.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
10π10π
10π10π
Step 7
Step 7.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 7.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: 01100110
Step 7.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 0⋅100⋅10
Step 7.4
Multiply 00 by 1010.
Phase Shift: 00
Phase Shift: 00
Step 8
List the properties of the trigonometric function.
Amplitude: None
Period: 10π10π
Phase Shift: None
Vertical Shift: 44
Step 9