Enter a problem...
Trigonometry Examples
tan(θ)=8tan(θ)=8
Step 1
Take the inverse tangent of both sides of the equation to extract θθ from inside the tangent.
θ=arctan(8)θ=arctan(8)
Step 2
Step 2.1
Evaluate arctan(8)arctan(8).
θ=1.44644133θ=1.44644133
θ=1.44644133θ=1.44644133
Step 3
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from ππ to find the solution in the fourth quadrant.
θ=(3.14159265)+1.44644133θ=(3.14159265)+1.44644133
Step 4
Step 4.1
Remove parentheses.
θ=3.14159265+1.44644133θ=3.14159265+1.44644133
Step 4.2
Remove parentheses.
θ=(3.14159265)+1.44644133θ=(3.14159265)+1.44644133
Step 4.3
Add 3.141592653.14159265 and 1.446441331.44644133.
θ=4.58803398θ=4.58803398
θ=4.58803398θ=4.58803398
Step 5
Step 5.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 5.2
Replace bb with 11 in the formula for period.
π|1|π|1|
Step 5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
π1π1
Step 5.4
Divide ππ by 11.
ππ
ππ
Step 6
The period of the tan(θ)tan(θ) function is ππ so values will repeat every ππ radians in both directions.
θ=1.44644133+πn,4.58803398+πnθ=1.44644133+πn,4.58803398+πn, for any integer nn
Step 7
Consolidate 1.44644133+πn1.44644133+πn and 4.58803398+πn4.58803398+πn to 1.44644133+πn1.44644133+πn.
θ=1.44644133+πnθ=1.44644133+πn, for any integer nn