Trigonometry Examples

Write in Standard Form 4x^2+4y^2-16x-8y-5=0
4x2+4y2-16x-8y-5=04x2+4y216x8y5=0
Step 1
Add 55 to both sides of the equation.
4x2+4y2-16x-8y=54x2+4y216x8y=5
Step 2
Divide both sides of the equation by 44.
x2+y2-4x-2y=54x2+y24x2y=54
Step 3
Complete the square for x2-4xx24x.
Tap for more steps...
Step 3.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-4b=4
c=0c=0
Step 3.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 3.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 3.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-421d=421
Step 3.3.2
Cancel the common factor of -44 and 22.
Tap for more steps...
Step 3.3.2.1
Factor 22 out of -44.
d=2-221d=2221
Step 3.3.2.2
Cancel the common factors.
Tap for more steps...
Step 3.3.2.2.1
Factor 22 out of 2121.
d=2-22(1)d=222(1)
Step 3.3.2.2.2
Cancel the common factor.
d=2-221
Step 3.3.2.2.3
Rewrite the expression.
d=-21
Step 3.3.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
Step 3.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 3.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-4)241
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.1.1
Cancel the common factor of (-4)2 and 4.
Tap for more steps...
Step 3.4.2.1.1.1
Rewrite -4 as -1(4).
e=0-(-1(4))241
Step 3.4.2.1.1.2
Apply the product rule to -1(4).
e=0-(-1)24241
Step 3.4.2.1.1.3
Raise -1 to the power of 2.
e=0-14241
Step 3.4.2.1.1.4
Multiply 42 by 1.
e=0-4241
Step 3.4.2.1.1.5
Factor 4 out of 42.
e=0-4441
Step 3.4.2.1.1.6
Cancel the common factors.
Tap for more steps...
Step 3.4.2.1.1.6.1
Factor 4 out of 41.
e=0-444(1)
Step 3.4.2.1.1.6.2
Cancel the common factor.
e=0-4441
Step 3.4.2.1.1.6.3
Rewrite the expression.
e=0-41
Step 3.4.2.1.1.6.4
Divide 4 by 1.
e=0-14
e=0-14
e=0-14
Step 3.4.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 3.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 3.5
Substitute the values of a, d, and e into the vertex form (x-2)2-4.
(x-2)2-4
(x-2)2-4
Step 4
Substitute (x-2)2-4 for x2-4x in the equation x2+y2-4x-2y=54.
(x-2)2-4+y2-2y=54
Step 5
Move -4 to the right side of the equation by adding 4 to both sides.
(x-2)2+y2-2y=54+4
Step 6
Complete the square for y2-2y.
Tap for more steps...
Step 6.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=-2
c=0
Step 6.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 6.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 6.3.1
Substitute the values of a and b into the formula d=b2a.
d=-221
Step 6.3.2
Cancel the common factor of -2 and 2.
Tap for more steps...
Step 6.3.2.1
Factor 2 out of -2.
d=2-121
Step 6.3.2.2
Cancel the common factors.
Tap for more steps...
Step 6.3.2.2.1
Factor 2 out of 21.
d=2-12(1)
Step 6.3.2.2.2
Cancel the common factor.
d=2-121
Step 6.3.2.2.3
Rewrite the expression.
d=-11
Step 6.3.2.2.4
Divide -1 by 1.
d=-1
d=-1
d=-1
d=-1
Step 6.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 6.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-2)241
Step 6.4.2
Simplify the right side.
Tap for more steps...
Step 6.4.2.1
Simplify each term.
Tap for more steps...
Step 6.4.2.1.1
Raise -2 to the power of 2.
e=0-441
Step 6.4.2.1.2
Multiply 4 by 1.
e=0-44
Step 6.4.2.1.3
Cancel the common factor of 4.
Tap for more steps...
Step 6.4.2.1.3.1
Cancel the common factor.
e=0-44
Step 6.4.2.1.3.2
Rewrite the expression.
e=0-11
e=0-11
Step 6.4.2.1.4
Multiply -1 by 1.
e=0-1
e=0-1
Step 6.4.2.2
Subtract 1 from 0.
e=-1
e=-1
e=-1
Step 6.5
Substitute the values of a, d, and e into the vertex form (y-1)2-1.
(y-1)2-1
(y-1)2-1
Step 7
Substitute (y-1)2-1 for y2-2y in the equation x2+y2-4x-2y=54.
(x-2)2+(y-1)2-1=54+4
Step 8
Move -1 to the right side of the equation by adding 1 to both sides.
(x-2)2+(y-1)2=54+4+1
Step 9
Simplify 54+4+1.
Tap for more steps...
Step 9.1
Find the common denominator.
Tap for more steps...
Step 9.1.1
Write 4 as a fraction with denominator 1.
(x-2)2+(y-1)2=54+41+1
Step 9.1.2
Multiply 41 by 44.
(x-2)2+(y-1)2=54+4144+1
Step 9.1.3
Multiply 41 by 44.
(x-2)2+(y-1)2=54+444+1
Step 9.1.4
Write 1 as a fraction with denominator 1.
(x-2)2+(y-1)2=54+444+11
Step 9.1.5
Multiply 11 by 44.
(x-2)2+(y-1)2=54+444+1144
Step 9.1.6
Multiply 11 by 44.
(x-2)2+(y-1)2=54+444+44
(x-2)2+(y-1)2=54+444+44
Step 9.2
Combine the numerators over the common denominator.
(x-2)2+(y-1)2=5+44+44
Step 9.3
Simplify the expression.
Tap for more steps...
Step 9.3.1
Multiply 4 by 4.
(x-2)2+(y-1)2=5+16+44
Step 9.3.2
Add 5 and 16.
(x-2)2+(y-1)2=21+44
Step 9.3.3
Add 21 and 4.
(x-2)2+(y-1)2=254
(x-2)2+(y-1)2=254
(x-2)2+(y-1)2=254
 [x2  12  π  xdx ]