Enter a problem...
Trigonometry Examples
y2-4y-4x2+8x=4y2−4y−4x2+8x=4
Step 1
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-4b=−4
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-42⋅1d=−42⋅1
Step 1.3.2
Cancel the common factor of -4−4 and 22.
Step 1.3.2.1
Factor 22 out of -4−4.
d=2⋅-22⋅1d=2⋅−22⋅1
Step 1.3.2.2
Cancel the common factors.
Step 1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-22(1)d=2⋅−22(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2⋅-22⋅1
Step 1.3.2.2.3
Rewrite the expression.
d=-21
Step 1.3.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
Step 1.4
Find the value of e using the formula e=c-b24a.
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-4)24⋅1
Step 1.4.2
Simplify the right side.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Cancel the common factor of (-4)2 and 4.
Step 1.4.2.1.1.1
Rewrite -4 as -1(4).
e=0-(-1(4))24⋅1
Step 1.4.2.1.1.2
Apply the product rule to -1(4).
e=0-(-1)2⋅424⋅1
Step 1.4.2.1.1.3
Raise -1 to the power of 2.
e=0-1⋅424⋅1
Step 1.4.2.1.1.4
Multiply 42 by 1.
e=0-424⋅1
Step 1.4.2.1.1.5
Factor 4 out of 42.
e=0-4⋅44⋅1
Step 1.4.2.1.1.6
Cancel the common factors.
Step 1.4.2.1.1.6.1
Factor 4 out of 4⋅1.
e=0-4⋅44(1)
Step 1.4.2.1.1.6.2
Cancel the common factor.
e=0-4⋅44⋅1
Step 1.4.2.1.1.6.3
Rewrite the expression.
e=0-41
Step 1.4.2.1.1.6.4
Divide 4 by 1.
e=0-1⋅4
e=0-1⋅4
e=0-1⋅4
Step 1.4.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 1.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 1.5
Substitute the values of a, d, and e into the vertex form (y-2)2-4.
(y-2)2-4
(y-2)2-4
Step 2
Substitute (y-2)2-4 for y2-4y in the equation y2-4y-4x2+8x=4.
(y-2)2-4-4x2+8x=4
Step 3
Move -4 to the right side of the equation by adding 4 to both sides.
(y-2)2-4x2+8x=4+4
Step 4
Step 4.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-4
b=8
c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.3
Find the value of d using the formula d=b2a.
Step 4.3.1
Substitute the values of a and b into the formula d=b2a.
d=82⋅-4
Step 4.3.2
Simplify the right side.
Step 4.3.2.1
Cancel the common factor of 8 and 2.
Step 4.3.2.1.1
Factor 2 out of 8.
d=2⋅42⋅-4
Step 4.3.2.1.2
Cancel the common factors.
Step 4.3.2.1.2.1
Factor 2 out of 2⋅-4.
d=2⋅42(-4)
Step 4.3.2.1.2.2
Cancel the common factor.
d=2⋅42⋅-4
Step 4.3.2.1.2.3
Rewrite the expression.
d=4-4
d=4-4
d=4-4
Step 4.3.2.2
Cancel the common factor of 4 and -4.
Step 4.3.2.2.1
Factor 4 out of 4.
d=4(1)-4
Step 4.3.2.2.2
Move the negative one from the denominator of 1-1.
d=-1⋅1
d=-1⋅1
Step 4.3.2.3
Multiply -1 by 1.
d=-1
d=-1
d=-1
Step 4.4
Find the value of e using the formula e=c-b24a.
Step 4.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-824⋅-4
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify each term.
Step 4.4.2.1.1
Raise 8 to the power of 2.
e=0-644⋅-4
Step 4.4.2.1.2
Multiply 4 by -4.
e=0-64-16
Step 4.4.2.1.3
Divide 64 by -16.
e=0--4
Step 4.4.2.1.4
Multiply -1 by -4.
e=0+4
e=0+4
Step 4.4.2.2
Add 0 and 4.
e=4
e=4
e=4
Step 4.5
Substitute the values of a, d, and e into the vertex form -4(x-1)2+4.
-4(x-1)2+4
-4(x-1)2+4
Step 5
Substitute -4(x-1)2+4 for -4x2+8x in the equation y2-4y-4x2+8x=4.
(y-2)2-4(x-1)2+4=4+4
Step 6
Move 4 to the right side of the equation by adding 4 to both sides.
(y-2)2-4(x-1)2=4+4-4
Step 7
Step 7.1
Add 4 and 4.
(y-2)2-4(x-1)2=8-4
Step 7.2
Subtract 4 from 8.
(y-2)2-4(x-1)2=4
(y-2)2-4(x-1)2=4
Step 8
Divide each term by 4 to make the right side equal to one.
(y-2)24-4(x-1)24=44
Step 9
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(y-2)24-(x-1)21=1