Trigonometry Examples

Write in Standard Form y^2-4y-4x^2+8x=4
y2-4y-4x2+8x=4y24y4x2+8x=4
Step 1
Complete the square for y2-4yy24y.
Tap for more steps...
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-4b=4
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-421d=421
Step 1.3.2
Cancel the common factor of -44 and 22.
Tap for more steps...
Step 1.3.2.1
Factor 22 out of -44.
d=2-221d=2221
Step 1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.3.2.2.1
Factor 22 out of 2121.
d=2-22(1)d=222(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2-221
Step 1.3.2.2.3
Rewrite the expression.
d=-21
Step 1.3.2.2.4
Divide -2 by 1.
d=-2
d=-2
d=-2
d=-2
Step 1.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-4)241
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Cancel the common factor of (-4)2 and 4.
Tap for more steps...
Step 1.4.2.1.1.1
Rewrite -4 as -1(4).
e=0-(-1(4))241
Step 1.4.2.1.1.2
Apply the product rule to -1(4).
e=0-(-1)24241
Step 1.4.2.1.1.3
Raise -1 to the power of 2.
e=0-14241
Step 1.4.2.1.1.4
Multiply 42 by 1.
e=0-4241
Step 1.4.2.1.1.5
Factor 4 out of 42.
e=0-4441
Step 1.4.2.1.1.6
Cancel the common factors.
Tap for more steps...
Step 1.4.2.1.1.6.1
Factor 4 out of 41.
e=0-444(1)
Step 1.4.2.1.1.6.2
Cancel the common factor.
e=0-4441
Step 1.4.2.1.1.6.3
Rewrite the expression.
e=0-41
Step 1.4.2.1.1.6.4
Divide 4 by 1.
e=0-14
e=0-14
e=0-14
Step 1.4.2.1.2
Multiply -1 by 4.
e=0-4
e=0-4
Step 1.4.2.2
Subtract 4 from 0.
e=-4
e=-4
e=-4
Step 1.5
Substitute the values of a, d, and e into the vertex form (y-2)2-4.
(y-2)2-4
(y-2)2-4
Step 2
Substitute (y-2)2-4 for y2-4y in the equation y2-4y-4x2+8x=4.
(y-2)2-4-4x2+8x=4
Step 3
Move -4 to the right side of the equation by adding 4 to both sides.
(y-2)2-4x2+8x=4+4
Step 4
Complete the square for -4x2+8x.
Tap for more steps...
Step 4.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-4
b=8
c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 4.3.1
Substitute the values of a and b into the formula d=b2a.
d=82-4
Step 4.3.2
Simplify the right side.
Tap for more steps...
Step 4.3.2.1
Cancel the common factor of 8 and 2.
Tap for more steps...
Step 4.3.2.1.1
Factor 2 out of 8.
d=242-4
Step 4.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.1.2.1
Factor 2 out of 2-4.
d=242(-4)
Step 4.3.2.1.2.2
Cancel the common factor.
d=242-4
Step 4.3.2.1.2.3
Rewrite the expression.
d=4-4
d=4-4
d=4-4
Step 4.3.2.2
Cancel the common factor of 4 and -4.
Tap for more steps...
Step 4.3.2.2.1
Factor 4 out of 4.
d=4(1)-4
Step 4.3.2.2.2
Move the negative one from the denominator of 1-1.
d=-11
d=-11
Step 4.3.2.3
Multiply -1 by 1.
d=-1
d=-1
d=-1
Step 4.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 4.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-824-4
Step 4.4.2
Simplify the right side.
Tap for more steps...
Step 4.4.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.1.1
Raise 8 to the power of 2.
e=0-644-4
Step 4.4.2.1.2
Multiply 4 by -4.
e=0-64-16
Step 4.4.2.1.3
Divide 64 by -16.
e=0--4
Step 4.4.2.1.4
Multiply -1 by -4.
e=0+4
e=0+4
Step 4.4.2.2
Add 0 and 4.
e=4
e=4
e=4
Step 4.5
Substitute the values of a, d, and e into the vertex form -4(x-1)2+4.
-4(x-1)2+4
-4(x-1)2+4
Step 5
Substitute -4(x-1)2+4 for -4x2+8x in the equation y2-4y-4x2+8x=4.
(y-2)2-4(x-1)2+4=4+4
Step 6
Move 4 to the right side of the equation by adding 4 to both sides.
(y-2)2-4(x-1)2=4+4-4
Step 7
Simplify 4+4-4.
Tap for more steps...
Step 7.1
Add 4 and 4.
(y-2)2-4(x-1)2=8-4
Step 7.2
Subtract 4 from 8.
(y-2)2-4(x-1)2=4
(y-2)2-4(x-1)2=4
Step 8
Divide each term by 4 to make the right side equal to one.
(y-2)24-4(x-1)24=44
Step 9
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(y-2)24-(x-1)21=1
 [x2  12  π  xdx ]