Enter a problem...
Trigonometry Examples
x2−6x+y2−32y=−264
Step 1
Step 1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=−6
c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.3
Find the value of d using the formula d=b2a.
Step 1.3.1
Substitute the values of a and b into the formula d=b2a.
d=−62⋅1
Step 1.3.2
Cancel the common factor of −6 and 2.
Step 1.3.2.1
Factor 2 out of −6.
d=2⋅−32⋅1
Step 1.3.2.2
Cancel the common factors.
Step 1.3.2.2.1
Factor 2 out of 2⋅1.
d=2⋅−32(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2⋅−32⋅1
Step 1.3.2.2.3
Rewrite the expression.
d=−31
Step 1.3.2.2.4
Divide −3 by 1.
d=−3
d=−3
d=−3
d=−3
Step 1.4
Find the value of e using the formula e=c−b24a.
Step 1.4.1
Substitute the values of c, b and a into the formula e=c−b24a.
e=0−(−6)24⋅1
Step 1.4.2
Simplify the right side.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Raise −6 to the power of 2.
e=0−364⋅1
Step 1.4.2.1.2
Multiply 4 by 1.
e=0−364
Step 1.4.2.1.3
Divide 36 by 4.
e=0−1⋅9
Step 1.4.2.1.4
Multiply −1 by 9.
e=0−9
e=0−9
Step 1.4.2.2
Subtract 9 from 0.
e=−9
e=−9
e=−9
Step 1.5
Substitute the values of a, d, and e into the vertex form (x−3)2−9.
(x−3)2−9
(x−3)2−9
Step 2
Substitute (x−3)2−9 for x2−6x in the equation x2−6x+y2−32y=−264.
(x−3)2−9+y2−32y=−264
Step 3
Move −9 to the right side of the equation by adding 9 to both sides.
(x−3)2+y2−32y=−264+9
Step 4
Step 4.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=−32
c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.3
Find the value of d using the formula d=b2a.
Step 4.3.1
Substitute the values of a and b into the formula d=b2a.
d=−322⋅1
Step 4.3.2
Cancel the common factor of −32 and 2.
Step 4.3.2.1
Factor 2 out of −32.
d=2⋅−162⋅1
Step 4.3.2.2
Cancel the common factors.
Step 4.3.2.2.1
Factor 2 out of 2⋅1.
d=2⋅−162(1)
Step 4.3.2.2.2
Cancel the common factor.
d=2⋅−162⋅1
Step 4.3.2.2.3
Rewrite the expression.
d=−161
Step 4.3.2.2.4
Divide −16 by 1.
d=−16
d=−16
d=−16
d=−16
Step 4.4
Find the value of e using the formula e=c−b24a.
Step 4.4.1
Substitute the values of c, b and a into the formula e=c−b24a.
e=0−(−32)24⋅1
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify each term.
Step 4.4.2.1.1
Raise −32 to the power of 2.
e=0−10244⋅1
Step 4.4.2.1.2
Multiply 4 by 1.
e=0−10244
Step 4.4.2.1.3
Divide 1024 by 4.
e=0−1⋅256
Step 4.4.2.1.4
Multiply −1 by 256.
e=0−256
e=0−256
Step 4.4.2.2
Subtract 256 from 0.
e=−256
e=−256
e=−256
Step 4.5
Substitute the values of a, d, and e into the vertex form (y−16)2−256.
(y−16)2−256
(y−16)2−256
Step 5
Substitute (y−16)2−256 for y2−32y in the equation x2−6x+y2−32y=−264.
(x−3)2+(y−16)2−256=−264+9
Step 6
Move −256 to the right side of the equation by adding 256 to both sides.
(x−3)2+(y−16)2=−264+9+256
Step 7
Step 7.1
Add −264 and 9.
(x−3)2+(y−16)2=−255+256
Step 7.2
Add −255 and 256.
(x−3)2+(y−16)2=1
(x−3)2+(y−16)2=1