Trigonometry Examples

Write in Standard Form x^2-6x+y^2-32y=-264
x26x+y232y=264
Step 1
Complete the square for x26x.
Tap for more steps...
Step 1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=6
c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 1.3.1
Substitute the values of a and b into the formula d=b2a.
d=621
Step 1.3.2
Cancel the common factor of 6 and 2.
Tap for more steps...
Step 1.3.2.1
Factor 2 out of 6.
d=2321
Step 1.3.2.2
Cancel the common factors.
Tap for more steps...
Step 1.3.2.2.1
Factor 2 out of 21.
d=232(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2321
Step 1.3.2.2.3
Rewrite the expression.
d=31
Step 1.3.2.2.4
Divide 3 by 1.
d=3
d=3
d=3
d=3
Step 1.4
Find the value of e using the formula e=cb24a.
Tap for more steps...
Step 1.4.1
Substitute the values of c, b and a into the formula e=cb24a.
e=0(6)241
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Raise 6 to the power of 2.
e=03641
Step 1.4.2.1.2
Multiply 4 by 1.
e=0364
Step 1.4.2.1.3
Divide 36 by 4.
e=019
Step 1.4.2.1.4
Multiply 1 by 9.
e=09
e=09
Step 1.4.2.2
Subtract 9 from 0.
e=9
e=9
e=9
Step 1.5
Substitute the values of a, d, and e into the vertex form (x3)29.
(x3)29
(x3)29
Step 2
Substitute (x3)29 for x26x in the equation x26x+y232y=264.
(x3)29+y232y=264
Step 3
Move 9 to the right side of the equation by adding 9 to both sides.
(x3)2+y232y=264+9
Step 4
Complete the square for y232y.
Tap for more steps...
Step 4.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=32
c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 4.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 4.3.1
Substitute the values of a and b into the formula d=b2a.
d=3221
Step 4.3.2
Cancel the common factor of 32 and 2.
Tap for more steps...
Step 4.3.2.1
Factor 2 out of 32.
d=21621
Step 4.3.2.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.2.1
Factor 2 out of 21.
d=2162(1)
Step 4.3.2.2.2
Cancel the common factor.
d=21621
Step 4.3.2.2.3
Rewrite the expression.
d=161
Step 4.3.2.2.4
Divide 16 by 1.
d=16
d=16
d=16
d=16
Step 4.4
Find the value of e using the formula e=cb24a.
Tap for more steps...
Step 4.4.1
Substitute the values of c, b and a into the formula e=cb24a.
e=0(32)241
Step 4.4.2
Simplify the right side.
Tap for more steps...
Step 4.4.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.1.1
Raise 32 to the power of 2.
e=0102441
Step 4.4.2.1.2
Multiply 4 by 1.
e=010244
Step 4.4.2.1.3
Divide 1024 by 4.
e=01256
Step 4.4.2.1.4
Multiply 1 by 256.
e=0256
e=0256
Step 4.4.2.2
Subtract 256 from 0.
e=256
e=256
e=256
Step 4.5
Substitute the values of a, d, and e into the vertex form (y16)2256.
(y16)2256
(y16)2256
Step 5
Substitute (y16)2256 for y232y in the equation x26x+y232y=264.
(x3)2+(y16)2256=264+9
Step 6
Move 256 to the right side of the equation by adding 256 to both sides.
(x3)2+(y16)2=264+9+256
Step 7
Simplify 264+9+256.
Tap for more steps...
Step 7.1
Add 264 and 9.
(x3)2+(y16)2=255+256
Step 7.2
Add 255 and 256.
(x3)2+(y16)2=1
(x3)2+(y16)2=1
 x2  12  π  xdx