Enter a problem...
Trigonometry Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Rewrite the equation as .
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of .
Step 1.1.2.2.1.1
Cancel the common factor.
Step 1.1.2.2.1.2
Rewrite the expression.
Step 1.1.2.2.2
Cancel the common factor of .
Step 1.1.2.2.2.1
Cancel the common factor.
Step 1.1.2.2.2.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Move the negative in front of the fraction.
Step 1.1.2.3.2
Multiply by .
Step 1.1.2.3.3
Combine and simplify the denominator.
Step 1.1.2.3.3.1
Multiply by .
Step 1.1.2.3.3.2
Move .
Step 1.1.2.3.3.3
Raise to the power of .
Step 1.1.2.3.3.4
Raise to the power of .
Step 1.1.2.3.3.5
Use the power rule to combine exponents.
Step 1.1.2.3.3.6
Add and .
Step 1.1.2.3.3.7
Rewrite as .
Step 1.1.2.3.3.7.1
Use to rewrite as .
Step 1.1.2.3.3.7.2
Apply the power rule and multiply exponents, .
Step 1.1.2.3.3.7.3
Combine and .
Step 1.1.2.3.3.7.4
Cancel the common factor of .
Step 1.1.2.3.3.7.4.1
Cancel the common factor.
Step 1.1.2.3.3.7.4.2
Rewrite the expression.
Step 1.1.2.3.3.7.5
Evaluate the exponent.
Step 1.1.2.3.4
Multiply by .
Step 1.1.3
Add to both sides of the equation.
Step 1.1.4
Reorder terms.
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Rewrite as .
Step 1.2.1.1.2
Expand using the FOIL Method.
Step 1.2.1.1.2.1
Apply the distributive property.
Step 1.2.1.1.2.2
Apply the distributive property.
Step 1.2.1.1.2.3
Apply the distributive property.
Step 1.2.1.1.3
Simplify and combine like terms.
Step 1.2.1.1.3.1
Simplify each term.
Step 1.2.1.1.3.1.1
Multiply by .
Step 1.2.1.1.3.1.2
Combine using the product rule for radicals.
Step 1.2.1.1.3.1.3
Multiply by .
Step 1.2.1.1.3.1.4
Rewrite as .
Step 1.2.1.1.3.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 1.2.1.1.3.2
Reorder the factors of .
Step 1.2.1.1.3.3
Add and .
Step 1.2.1.1.4
Apply the distributive property.
Step 1.2.1.1.5
Simplify.
Step 1.2.1.1.5.1
Combine and .
Step 1.2.1.1.5.2
Cancel the common factor of .
Step 1.2.1.1.5.2.1
Move the leading negative in into the numerator.
Step 1.2.1.1.5.2.2
Factor out of .
Step 1.2.1.1.5.2.3
Factor out of .
Step 1.2.1.1.5.2.4
Cancel the common factor.
Step 1.2.1.1.5.2.5
Rewrite the expression.
Step 1.2.1.1.5.3
Combine and .
Step 1.2.1.1.5.4
Combine and .
Step 1.2.1.1.5.5
Combine using the product rule for radicals.
Step 1.2.1.1.5.6
Multiply by .
Step 1.2.1.1.5.7
Multiply .
Step 1.2.1.1.5.7.1
Multiply by .
Step 1.2.1.1.5.7.2
Combine and .
Step 1.2.1.1.6
Simplify each term.
Step 1.2.1.1.6.1
Simplify the numerator.
Step 1.2.1.1.6.1.1
Rewrite.
Step 1.2.1.1.6.1.2
Add and .
Step 1.2.1.1.6.1.3
Remove unnecessary parentheses.
Step 1.2.1.1.6.1.4
Factor out negative.
Step 1.2.1.1.6.2
Move the negative in front of the fraction.
Step 1.2.1.1.6.3
Move the negative in front of the fraction.
Step 1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.1.3
Combine and .
Step 1.2.1.4
Combine the numerators over the common denominator.
Step 1.2.1.5
Combine the numerators over the common denominator.
Step 1.2.1.6
Move to the left of .
Step 1.2.1.7
Add and .
Step 1.2.1.8
Move the negative in front of the fraction.
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Dividing two negative values results in a positive value.
Step 1.2.4.2.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.3
Combine and .
Step 1.2.4.2.4
Reduce the expression by cancelling the common factors.
Step 1.2.4.2.4.1
Factor out of .
Step 1.2.4.2.4.2
Factor out of .
Step 1.2.4.2.4.3
Cancel the common factor.
Step 1.2.4.2.4.4
Rewrite the expression.
Step 1.2.4.2.5
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.6
Multiply by .
Step 1.2.4.2.7
Cancel the common factor of .
Step 1.2.4.2.7.1
Cancel the common factor.
Step 1.2.4.2.7.2
Rewrite the expression.
Step 1.2.4.2.8
Combine and .
Step 1.2.4.2.9
Combine and into a single radical.
Step 1.2.4.2.10
Divide by .
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Simplify the numerator.
Step 1.2.5.2.1.1.1
Apply the product rule to .
Step 1.2.5.2.1.1.2
Raise to the power of .
Step 1.2.5.2.1.1.3
Apply the product rule to .
Step 1.2.5.2.1.1.4
Rewrite as .
Step 1.2.5.2.1.1.4.1
Use to rewrite as .
Step 1.2.5.2.1.1.4.2
Apply the power rule and multiply exponents, .
Step 1.2.5.2.1.1.4.3
Combine and .
Step 1.2.5.2.1.1.4.4
Cancel the common factor of .
Step 1.2.5.2.1.1.4.4.1
Cancel the common factor.
Step 1.2.5.2.1.1.4.4.2
Rewrite the expression.
Step 1.2.5.2.1.1.4.5
Evaluate the exponent.
Step 1.2.5.2.1.1.5
Raise to the power of .
Step 1.2.5.2.1.1.6
Cancel the common factor of and .
Step 1.2.5.2.1.1.6.1
Factor out of .
Step 1.2.5.2.1.1.6.2
Cancel the common factors.
Step 1.2.5.2.1.1.6.2.1
Factor out of .
Step 1.2.5.2.1.1.6.2.2
Cancel the common factor.
Step 1.2.5.2.1.1.6.2.3
Rewrite the expression.
Step 1.2.5.2.1.1.7
Multiply by .
Step 1.2.5.2.1.2
Simplify the denominator.
Step 1.2.5.2.1.2.1
Multiply by .
Step 1.2.5.2.1.2.2
Combine and .
Step 1.2.5.2.1.3
Simplify the denominator.
Step 1.2.5.2.1.3.1
Reduce the expression by cancelling the common factors.
Step 1.2.5.2.1.3.1.1
Factor out of .
Step 1.2.5.2.1.3.1.2
Factor out of .
Step 1.2.5.2.1.3.1.3
Cancel the common factor.
Step 1.2.5.2.1.3.1.4
Rewrite the expression.
Step 1.2.5.2.1.3.2
Move the negative in front of the fraction.
Step 1.2.5.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.5.2.1.5
Cancel the common factor of .
Step 1.2.5.2.1.5.1
Move the leading negative in into the numerator.
Step 1.2.5.2.1.5.2
Factor out of .
Step 1.2.5.2.1.5.3
Factor out of .
Step 1.2.5.2.1.5.4
Cancel the common factor.
Step 1.2.5.2.1.5.5
Rewrite the expression.
Step 1.2.5.2.1.6
Multiply by .
Step 1.2.5.2.1.7
Multiply by .
Step 1.2.5.2.1.8
Move the negative in front of the fraction.
Step 1.2.5.2.1.9
Multiply by .
Step 1.2.5.2.1.10
Combine and simplify the denominator.
Step 1.2.5.2.1.10.1
Multiply by .
Step 1.2.5.2.1.10.2
Move .
Step 1.2.5.2.1.10.3
Raise to the power of .
Step 1.2.5.2.1.10.4
Raise to the power of .
Step 1.2.5.2.1.10.5
Use the power rule to combine exponents.
Step 1.2.5.2.1.10.6
Add and .
Step 1.2.5.2.1.10.7
Rewrite as .
Step 1.2.5.2.1.10.7.1
Use to rewrite as .
Step 1.2.5.2.1.10.7.2
Apply the power rule and multiply exponents, .
Step 1.2.5.2.1.10.7.3
Combine and .
Step 1.2.5.2.1.10.7.4
Cancel the common factor of .
Step 1.2.5.2.1.10.7.4.1
Cancel the common factor.
Step 1.2.5.2.1.10.7.4.2
Rewrite the expression.
Step 1.2.5.2.1.10.7.5
Evaluate the exponent.
Step 1.2.5.2.1.11
Multiply by .
Step 1.2.5.2.1.12
Multiply .
Step 1.2.5.2.1.12.1
Multiply by .
Step 1.2.5.2.1.12.2
Multiply by .
Step 1.2.5.2.2
Combine the numerators over the common denominator.
Step 1.2.5.2.3
Add and .
Step 1.2.5.2.4
Cancel the common factor of .
Step 1.2.5.2.4.1
Cancel the common factor.
Step 1.2.5.2.4.2
Divide by .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4
Step 4.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 4.2
Substitute the value of into the formula.
Step 4.3
Simplify.
Step 4.3.1
Cancel the common factor of and .
Step 4.3.1.1
Rewrite as .
Step 4.3.1.2
Move the negative in front of the fraction.
Step 4.3.2
Combine and .
Step 4.3.3
Cancel the common factor of and .
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Cancel the common factors.
Step 4.3.3.2.1
Factor out of .
Step 4.3.3.2.2
Cancel the common factor.
Step 4.3.3.2.3
Rewrite the expression.
Step 4.3.4
Multiply the numerator by the reciprocal of the denominator.
Step 4.3.5
Multiply .
Step 4.3.5.1
Multiply by .
Step 4.3.5.2
Multiply by .
Step 5
Step 5.1
The directrix of a parabola is the vertical line found by subtracting from the x-coordinate of the vertex if the parabola opens left or right.
Step 5.2
Substitute the known values of and into the formula and simplify.
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 7