Trigonometry Examples

Solve the Triangle tri{36}{}{39}{}{15}{}
SideAngleb=36c=39a=15A=B=C=SideAngleb=36c=39a=15A=B=C=
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)a2=b2+c22bccos(A)
Step 2
Solve the equation.
A=arccos(b2+c2-a22bc)A=arccos(b2+c2a22bc)
Step 3
Substitute the known values into the equation.
A=arccos((36)2+(39)2-(15)22(36)(39))A=arccos((36)2+(39)2(15)22(36)(39))
Step 4
Simplify the results.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 3636 to the power of 22.
A=arccos(1296+392-1522(36)39)A=arccos(1296+3921522(36)39)
Step 4.1.2
Raise 3939 to the power of 22.
A=arccos(1296+1521-1522(36)39)A=arccos(1296+15211522(36)39)
Step 4.1.3
Raise 1515 to the power of 22.
A=arccos(1296+1521-12252(36)39)A=arccos(1296+152112252(36)39)
Step 4.1.4
Multiply -11 by 225225.
A=arccos(1296+1521-2252(36)39)A=arccos(1296+15212252(36)39)
Step 4.1.5
Add 12961296 and 15211521.
A=arccos(2817-2252(36)39)A=arccos(28172252(36)39)
Step 4.1.6
Subtract 225225 from 28172817.
A=arccos(25922(36)39)A=arccos(25922(36)39)
A=arccos(25922(36)39)A=arccos(25922(36)39)
Step 4.2
Simplify the denominator.
Tap for more steps...
Step 4.2.1
Multiply 22 by 3636.
A=arccos(25927239)A=arccos(25927239)
Step 4.2.2
Multiply 7272 by 3939.
A=arccos(25922808)A=arccos(25922808)
A=arccos(25922808)A=arccos(25922808)
Step 4.3
Cancel the common factor of 25922592 and 28082808.
Tap for more steps...
Step 4.3.1
Factor 216216 out of 25922592.
A=arccos(216(12)2808)A=arccos(216(12)2808)
Step 4.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.1
Factor 216216 out of 28082808.
A=arccos(2161221613)A=arccos(2161221613)
Step 4.3.2.2
Cancel the common factor.
A=arccos(2161221613)
Step 4.3.2.3
Rewrite the expression.
A=arccos(1213)
A=arccos(1213)
A=arccos(1213)
Step 4.4
Evaluate arccos(1213).
A=22.61986494
A=22.61986494
Step 5
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
b2=a2+c2-2accos(B)
Step 6
Solve the equation.
B=arccos(a2+c2-b22ac)
Step 7
Substitute the known values into the equation.
B=arccos((15)2+(39)2-(36)22(15)(39))
Step 8
Simplify the results.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Raise 15 to the power of 2.
B=arccos(225+392-3622(15)39)
Step 8.1.2
Raise 39 to the power of 2.
B=arccos(225+1521-3622(15)39)
Step 8.1.3
Raise 36 to the power of 2.
B=arccos(225+1521-112962(15)39)
Step 8.1.4
Multiply -1 by 1296.
B=arccos(225+1521-12962(15)39)
Step 8.1.5
Add 225 and 1521.
B=arccos(1746-12962(15)39)
Step 8.1.6
Subtract 1296 from 1746.
B=arccos(4502(15)39)
B=arccos(4502(15)39)
Step 8.2
Simplify the denominator.
Tap for more steps...
Step 8.2.1
Multiply 2 by 15.
B=arccos(4503039)
Step 8.2.2
Multiply 30 by 39.
B=arccos(4501170)
B=arccos(4501170)
Step 8.3
Cancel the common factor of 450 and 1170.
Tap for more steps...
Step 8.3.1
Factor 90 out of 450.
B=arccos(90(5)1170)
Step 8.3.2
Cancel the common factors.
Tap for more steps...
Step 8.3.2.1
Factor 90 out of 1170.
B=arccos(9059013)
Step 8.3.2.2
Cancel the common factor.
B=arccos(9059013)
Step 8.3.2.3
Rewrite the expression.
B=arccos(513)
B=arccos(513)
B=arccos(513)
Step 8.4
Evaluate arccos(513).
B=67.38013505
B=67.38013505
Step 9
The sum of all the angles in a triangle is 180 degrees.
22.61986494+C+67.38013505=180
Step 10
Solve the equation for C.
Tap for more steps...
Step 10.1
Add 22.61986494 and 67.38013505.
C+90=180
Step 10.2
Move all terms not containing C to the right side of the equation.
Tap for more steps...
Step 10.2.1
Subtract 90 from both sides of the equation.
C=180-90
Step 10.2.2
Subtract 90 from 180.
C=90
C=90
C=90
Step 11
These are the results for all angles and sides for the given triangle.
A=22.61986494
B=67.38013505
C=90
a=15
b=36
c=39
 [x2  12  π  xdx ]