Trigonometry Examples

Solve the Triangle tri{16}{}{20}{}{12}{}
SideAngleb=16c=20a=12A=B=C=SideAngleb=16c=20a=12A=B=C=
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)a2=b2+c22bccos(A)
Step 2
Solve the equation.
A=arccos(b2+c2-a22bc)A=arccos(b2+c2a22bc)
Step 3
Substitute the known values into the equation.
A=arccos((16)2+(20)2-(12)22(16)(20))A=arccos((16)2+(20)2(12)22(16)(20))
Step 4
Simplify the results.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 1616 to the power of 22.
A=arccos(256+202-1222(16)20)A=arccos(256+2021222(16)20)
Step 4.1.2
Raise 2020 to the power of 22.
A=arccos(256+400-1222(16)20)A=arccos(256+4001222(16)20)
Step 4.1.3
Raise 1212 to the power of 22.
A=arccos(256+400-11442(16)20)A=arccos(256+40011442(16)20)
Step 4.1.4
Multiply -11 by 144144.
A=arccos(256+400-1442(16)20)A=arccos(256+4001442(16)20)
Step 4.1.5
Add 256256 and 400400.
A=arccos(656-1442(16)20)A=arccos(6561442(16)20)
Step 4.1.6
Subtract 144144 from 656656.
A=arccos(5122(16)20)A=arccos(5122(16)20)
A=arccos(5122(16)20)A=arccos(5122(16)20)
Step 4.2
Simplify the denominator.
Tap for more steps...
Step 4.2.1
Multiply 22 by 1616.
A=arccos(5123220)A=arccos(5123220)
Step 4.2.2
Multiply 3232 by 2020.
A=arccos(512640)A=arccos(512640)
A=arccos(512640)A=arccos(512640)
Step 4.3
Cancel the common factor of 512512 and 640640.
Tap for more steps...
Step 4.3.1
Factor 128128 out of 512512.
A=arccos(128(4)640)A=arccos(128(4)640)
Step 4.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.1
Factor 128128 out of 640640.
A=arccos(12841285)A=arccos(12841285)
Step 4.3.2.2
Cancel the common factor.
A=arccos(12841285)
Step 4.3.2.3
Rewrite the expression.
A=arccos(45)
A=arccos(45)
A=arccos(45)
Step 4.4
Evaluate arccos(45).
A=36.86989764
A=36.86989764
Step 5
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
b2=a2+c2-2accos(B)
Step 6
Solve the equation.
B=arccos(a2+c2-b22ac)
Step 7
Substitute the known values into the equation.
B=arccos((12)2+(20)2-(16)22(12)(20))
Step 8
Simplify the results.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Raise 12 to the power of 2.
B=arccos(144+202-1622(12)20)
Step 8.1.2
Raise 20 to the power of 2.
B=arccos(144+400-1622(12)20)
Step 8.1.3
Raise 16 to the power of 2.
B=arccos(144+400-12562(12)20)
Step 8.1.4
Multiply -1 by 256.
B=arccos(144+400-2562(12)20)
Step 8.1.5
Add 144 and 400.
B=arccos(544-2562(12)20)
Step 8.1.6
Subtract 256 from 544.
B=arccos(2882(12)20)
B=arccos(2882(12)20)
Step 8.2
Simplify the denominator.
Tap for more steps...
Step 8.2.1
Multiply 2 by 12.
B=arccos(2882420)
Step 8.2.2
Multiply 24 by 20.
B=arccos(288480)
B=arccos(288480)
Step 8.3
Cancel the common factor of 288 and 480.
Tap for more steps...
Step 8.3.1
Factor 96 out of 288.
B=arccos(96(3)480)
Step 8.3.2
Cancel the common factors.
Tap for more steps...
Step 8.3.2.1
Factor 96 out of 480.
B=arccos(963965)
Step 8.3.2.2
Cancel the common factor.
B=arccos(963965)
Step 8.3.2.3
Rewrite the expression.
B=arccos(35)
B=arccos(35)
B=arccos(35)
Step 8.4
Evaluate arccos(35).
B=53.13010235
B=53.13010235
Step 9
The sum of all the angles in a triangle is 180 degrees.
36.86989764+C+53.13010235=180
Step 10
Solve the equation for C.
Tap for more steps...
Step 10.1
Add 36.86989764 and 53.13010235.
C+90=180
Step 10.2
Move all terms not containing C to the right side of the equation.
Tap for more steps...
Step 10.2.1
Subtract 90 from both sides of the equation.
C=180-90
Step 10.2.2
Subtract 90 from 180.
C=90
C=90
C=90
Step 11
These are the results for all angles and sides for the given triangle.
A=36.86989764
B=53.13010235
C=90
a=12
b=16
c=20
 [x2  12  π  xdx ]