Enter a problem...
Trigonometry Examples
SideAngleb=2c=a=3A=B=C=90SideAngleb=2c=a=3A=B=C=90
Step 1
Step 1.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 1.2
Solve the equation for cc.
c=√b2+a2c=√b2+a2
Step 1.3
Substitute the actual values into the equation.
c=√(2)2+(3)2c=√(2)2+(3)2
Step 1.4
Raise 22 to the power of 22.
c=√4+(3)2c=√4+(3)2
Step 1.5
Raise 33 to the power of 22.
c=√4+9c=√4+9
Step 1.6
Add 44 and 99.
c=√13c=√13
c=√13c=√13
Step 2
Step 2.1
The angle BB can be found using the inverse sine function.
B=arcsin(opphyp)B=arcsin(opphyp)
Step 2.2
Substitute in the values of the opposite side to angle BB and hypotenuse √13√13 of the triangle.
B=arcsin(2√13)B=arcsin(2√13)
Step 2.3
Multiply 2√132√13 by √13√13√13√13.
B=arcsin(2√13⋅√13√13)B=arcsin(2√13⋅√13√13)
Step 2.4
Combine and simplify the denominator.
Step 2.4.1
Multiply 2√132√13 by √13√13√13√13.
B=arcsin(2√13√13√13)B=arcsin(2√13√13√13)
Step 2.4.2
Raise √13√13 to the power of 11.
B=arcsin(2√13√13√13)B=arcsin(2√13√13√13)
Step 2.4.3
Raise √13√13 to the power of 11.
B=arcsin(2√13√13√13)B=arcsin(2√13√13√13)
Step 2.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
B=arcsin(2√13√131+1)B=arcsin(2√13√131+1)
Step 2.4.5
Add 11 and 11.
B=arcsin(2√13√132)B=arcsin(2√13√132)
Step 2.4.6
Rewrite √132√132 as 1313.
Step 2.4.6.1
Use n√ax=axnn√ax=axn to rewrite √13√13 as 13121312.
B=arcsin(2√13(1312)2)B=arcsin⎛⎜
⎜⎝2√13(1312)2⎞⎟
⎟⎠
Step 2.4.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
B=arcsin(2√131312⋅2)B=arcsin(2√131312⋅2)
Step 2.4.6.3
Combine 1212 and 22.
B=arcsin(2√131322)B=arcsin(2√131322)
Step 2.4.6.4
Cancel the common factor of 22.
Step 2.4.6.4.1
Cancel the common factor.
B=arcsin(2√131322)
Step 2.4.6.4.2
Rewrite the expression.
B=arcsin(2√1313)
B=arcsin(2√1313)
Step 2.4.6.5
Evaluate the exponent.
B=arcsin(2√1313)
B=arcsin(2√1313)
B=arcsin(2√1313)
Step 2.5
Evaluate arcsin(2√1313).
B=33.69006752
B=33.69006752
Step 3
Step 3.1
The sum of all the angles in a triangle is 180 degrees.
A+90+33.69006752=180
Step 3.2
Solve the equation for A.
Step 3.2.1
Add 90 and 33.69006752.
A+123.69006752=180
Step 3.2.2
Move all terms not containing A to the right side of the equation.
Step 3.2.2.1
Subtract 123.69006752 from both sides of the equation.
A=180-123.69006752
Step 3.2.2.2
Subtract 123.69006752 from 180.
A=56.30993247
A=56.30993247
A=56.30993247
A=56.30993247
Step 4
These are the results for all angles and sides for the given triangle.
A=56.30993247
B=33.69006752
C=90
a=3
b=2
c=√13