Trigonometry Examples

Solve the Triangle tri{2}{}{}{}{3}{90}
SideAngleb=2c=a=3A=B=C=90SideAngleb=2c=a=3A=B=C=90
Step 1
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 1.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 1.2
Solve the equation for cc.
c=b2+a2c=b2+a2
Step 1.3
Substitute the actual values into the equation.
c=(2)2+(3)2c=(2)2+(3)2
Step 1.4
Raise 22 to the power of 22.
c=4+(3)2c=4+(3)2
Step 1.5
Raise 33 to the power of 22.
c=4+9c=4+9
Step 1.6
Add 44 and 99.
c=13c=13
c=13c=13
Step 2
Find BB.
Tap for more steps...
Step 2.1
The angle BB can be found using the inverse sine function.
B=arcsin(opphyp)B=arcsin(opphyp)
Step 2.2
Substitute in the values of the opposite side to angle BB and hypotenuse 1313 of the triangle.
B=arcsin(213)B=arcsin(213)
Step 2.3
Multiply 213213 by 13131313.
B=arcsin(2131313)B=arcsin(2131313)
Step 2.4
Combine and simplify the denominator.
Tap for more steps...
Step 2.4.1
Multiply 213213 by 13131313.
B=arcsin(2131313)B=arcsin(2131313)
Step 2.4.2
Raise 1313 to the power of 11.
B=arcsin(2131313)B=arcsin(2131313)
Step 2.4.3
Raise 1313 to the power of 11.
B=arcsin(2131313)B=arcsin(2131313)
Step 2.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
B=arcsin(213131+1)B=arcsin(213131+1)
Step 2.4.5
Add 11 and 11.
B=arcsin(213132)B=arcsin(213132)
Step 2.4.6
Rewrite 132132 as 1313.
Tap for more steps...
Step 2.4.6.1
Use nax=axnnax=axn to rewrite 1313 as 13121312.
B=arcsin(213(1312)2)B=arcsin⎜ ⎜213(1312)2⎟ ⎟
Step 2.4.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
B=arcsin(21313122)B=arcsin(21313122)
Step 2.4.6.3
Combine 1212 and 22.
B=arcsin(2131322)B=arcsin(2131322)
Step 2.4.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.4.6.4.1
Cancel the common factor.
B=arcsin(2131322)
Step 2.4.6.4.2
Rewrite the expression.
B=arcsin(21313)
B=arcsin(21313)
Step 2.4.6.5
Evaluate the exponent.
B=arcsin(21313)
B=arcsin(21313)
B=arcsin(21313)
Step 2.5
Evaluate arcsin(21313).
B=33.69006752
B=33.69006752
Step 3
Find the last angle of the triangle.
Tap for more steps...
Step 3.1
The sum of all the angles in a triangle is 180 degrees.
A+90+33.69006752=180
Step 3.2
Solve the equation for A.
Tap for more steps...
Step 3.2.1
Add 90 and 33.69006752.
A+123.69006752=180
Step 3.2.2
Move all terms not containing A to the right side of the equation.
Tap for more steps...
Step 3.2.2.1
Subtract 123.69006752 from both sides of the equation.
A=180-123.69006752
Step 3.2.2.2
Subtract 123.69006752 from 180.
A=56.30993247
A=56.30993247
A=56.30993247
A=56.30993247
Step 4
These are the results for all angles and sides for the given triangle.
A=56.30993247
B=33.69006752
C=90
a=3
b=2
c=13
 [x2  12  π  xdx ]