Trigonometry Examples

Solve the Triangle tri{5}{}{10}{}{}{90}
SideAngleb=5c=10a=A=B=C=90SideAngleb=5c=10a=A=B=C=90
Step 1
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 1.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 1.2
Solve the equation for aa.
a=c2-b2a=c2b2
Step 1.3
Substitute the actual values into the equation.
a=(10)2-(5)2a=(10)2(5)2
Step 1.4
Raise 1010 to the power of 22.
a=100-(5)2a=100(5)2
Step 1.5
Raise 55 to the power of 22.
a=100-125a=100125
Step 1.6
Multiply -11 by 2525.
a=100-25a=10025
Step 1.7
Subtract 2525 from 100100.
a=75a=75
Step 1.8
Rewrite 7575 as 523523.
Tap for more steps...
Step 1.8.1
Factor 2525 out of 7575.
a=25(3)a=25(3)
Step 1.8.2
Rewrite 2525 as 5252.
a=523a=523
a=523a=523
Step 1.9
Pull terms out from under the radical.
a=53a=53
a=53a=53
Step 2
Find BB.
Tap for more steps...
Step 2.1
The angle BB can be found using the inverse sine function.
B=arcsin(opphyp)B=arcsin(opphyp)
Step 2.2
Substitute in the values of the opposite side to angle BB and hypotenuse 1010 of the triangle.
B=arcsin(510)B=arcsin(510)
Step 2.3
Cancel the common factor of 55 and 1010.
Tap for more steps...
Step 2.3.1
Factor 55 out of 55.
B=arcsin(5(1)10)B=arcsin(5(1)10)
Step 2.3.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.1
Factor 55 out of 1010.
B=arcsin(5152)B=arcsin(5152)
Step 2.3.2.2
Cancel the common factor.
B=arcsin(5152)
Step 2.3.2.3
Rewrite the expression.
B=arcsin(12)
B=arcsin(12)
B=arcsin(12)
Step 2.4
The exact value of arcsin(12) is 30.
B=30
B=30
Step 3
Find the last angle of the triangle.
Tap for more steps...
Step 3.1
The sum of all the angles in a triangle is 180 degrees.
A+90+30=180
Step 3.2
Solve the equation for A.
Tap for more steps...
Step 3.2.1
Add 90 and 30.
A+120=180
Step 3.2.2
Move all terms not containing A to the right side of the equation.
Tap for more steps...
Step 3.2.2.1
Subtract 120 from both sides of the equation.
A=180-120
Step 3.2.2.2
Subtract 120 from 180.
A=60
A=60
A=60
A=60
Step 4
These are the results for all angles and sides for the given triangle.
A=60
B=30
C=90
a=53
b=5
c=10
 [x2  12  π  xdx ]