Enter a problem...
Trigonometry Examples
SideAngleb=c=2√3a=A=30B=60C=90SideAngleb=c=2√3a=A=30B=60C=90
Step 1
Step 1.1
The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
cos(A)=adjhypcos(A)=adjhyp
Step 1.2
Substitute the name of each side into the definition of the cosine function.
cos(A)=bccos(A)=bc
Step 1.3
Set up the equation to solve for the adjacent side, in this case bb.
b=c⋅cos(A)b=c⋅cos(A)
Step 1.4
Substitute the values of each variable into the formula for cosine.
b=2√3⋅cos(30)b=2√3⋅cos(30)
Step 1.5
Cancel the common factor of 22.
Step 1.5.1
Factor 22 out of 2√32√3.
b=2(√3)⋅√32b=2(√3)⋅√32
Step 1.5.2
Cancel the common factor.
b=2√3⋅√32
Step 1.5.3
Rewrite the expression.
b=√3⋅√3
b=√3⋅√3
Step 1.6
Use the power rule aman=am+n to combine exponents.
b=√31+1
Step 1.7
Add 1 and 1.
b=√32
Step 1.8
Rewrite √32 as 3.
Step 1.8.1
Use n√ax=axn to rewrite √3 as 312.
b=(312)2
Step 1.8.2
Apply the power rule and multiply exponents, (am)n=amn.
b=312⋅2
Step 1.8.3
Combine 12 and 2.
b=322
Step 1.8.4
Cancel the common factor of 2.
Step 1.8.4.1
Cancel the common factor.
b=322
Step 1.8.4.2
Rewrite the expression.
b=3
b=3
Step 1.8.5
Evaluate the exponent.
b=3
b=3
b=3
Step 2
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2
Step 2.2
Solve the equation for a.
a=√c2-b2
Step 2.3
Substitute the actual values into the equation.
a=√(2√3)2-(3)2
Step 2.4
Simplify the expression.
Step 2.4.1
Apply the product rule to 2√3.
a=√22√32-(3)2
Step 2.4.2
Raise 2 to the power of 2.
a=√4√32-(3)2
a=√4√32-(3)2
Step 2.5
Rewrite √32 as 3.
Step 2.5.1
Use n√ax=axn to rewrite √3 as 312.
a=√4(312)2-(3)2
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
a=√4⋅312⋅2-(3)2
Step 2.5.3
Combine 12 and 2.
a=√4⋅322-(3)2
Step 2.5.4
Cancel the common factor of 2.
Step 2.5.4.1
Cancel the common factor.
a=√4⋅322-(3)2
Step 2.5.4.2
Rewrite the expression.
a=√4⋅3-(3)2
a=√4⋅3-(3)2
Step 2.5.5
Evaluate the exponent.
a=√4⋅3-(3)2
a=√4⋅3-(3)2
Step 2.6
Simplify the expression.
Step 2.6.1
Multiply 4 by 3.
a=√12-(3)2
Step 2.6.2
Raise 3 to the power of 2.
a=√12-1⋅9
Step 2.6.3
Multiply -1 by 9.
a=√12-9
Step 2.6.4
Subtract 9 from 12.
a=√3
a=√3
a=√3
Step 3
These are the results for all angles and sides for the given triangle.
A=30
B=60
C=90
a=√3
b=3
c=2√3