Enter a problem...
Trigonometry Examples
SideAngleb=c=9√2a=A=45B=45C=90
Step 1
Step 1.1
The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
cos(A)=adjhyp
Step 1.2
Substitute the name of each side into the definition of the cosine function.
cos(A)=bc
Step 1.3
Set up the equation to solve for the adjacent side, in this case b.
b=c⋅cos(A)
Step 1.4
Substitute the values of each variable into the formula for cosine.
b=9√2⋅cos(45)
Step 1.5
Multiply 9√2√22.
Step 1.5.1
Combine √22 and 9.
b=√2⋅92⋅√2
Step 1.5.2
Combine √2⋅92 and √2.
b=√2⋅(9√2)2
Step 1.5.3
Raise √2 to the power of 1.
b=9(√2√2)2
Step 1.5.4
Raise √2 to the power of 1.
b=9(√2√2)2
Step 1.5.5
Use the power rule aman=am+n to combine exponents.
b=9√21+12
Step 1.5.6
Add 1 and 1.
b=9√222
b=9√222
Step 1.6
Rewrite √22 as 2.
Step 1.6.1
Use n√ax=axn to rewrite √2 as 212.
b=9(212)22
Step 1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
b=9⋅212⋅22
Step 1.6.3
Combine 12 and 2.
b=9⋅2222
Step 1.6.4
Cancel the common factor of 2.
Step 1.6.4.1
Cancel the common factor.
b=9⋅2222
Step 1.6.4.2
Rewrite the expression.
b=9⋅22
b=9⋅22
Step 1.6.5
Evaluate the exponent.
b=9⋅22
b=9⋅22
Step 1.7
Simplify the expression.
Step 1.7.1
Multiply 9 by 2.
b=182
Step 1.7.2
Divide 18 by 2.
b=9
b=9
b=9
Step 2
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2
Step 2.2
Solve the equation for a.
a=√c2-b2
Step 2.3
Substitute the actual values into the equation.
a=√(9√2)2-(9)2
Step 2.4
Simplify the expression.
Step 2.4.1
Apply the product rule to 9√2.
a=√92√22-(9)2
Step 2.4.2
Raise 9 to the power of 2.
a=√81√22-(9)2
a=√81√22-(9)2
Step 2.5
Rewrite √22 as 2.
Step 2.5.1
Use n√ax=axn to rewrite √2 as 212.
a=√81(212)2-(9)2
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
a=√81⋅212⋅2-(9)2
Step 2.5.3
Combine 12 and 2.
a=√81⋅222-(9)2
Step 2.5.4
Cancel the common factor of 2.
Step 2.5.4.1
Cancel the common factor.
a=√81⋅222-(9)2
Step 2.5.4.2
Rewrite the expression.
a=√81⋅2-(9)2
a=√81⋅2-(9)2
Step 2.5.5
Evaluate the exponent.
a=√81⋅2-(9)2
a=√81⋅2-(9)2
Step 2.6
Simplify the expression.
Step 2.6.1
Multiply 81 by 2.
a=√162-(9)2
Step 2.6.2
Raise 9 to the power of 2.
a=√162-1⋅81
Step 2.6.3
Multiply -1 by 81.
a=√162-81
Step 2.6.4
Subtract 81 from 162.
a=√81
Step 2.6.5
Rewrite 81 as 92.
a=√92
Step 2.6.6
Pull terms out from under the radical, assuming positive real numbers.
a=9
a=9
a=9
Step 3
These are the results for all angles and sides for the given triangle.
A=45
B=45
C=90
a=9
b=9
c=9√2