Enter a problem...
Trigonometry Examples
y29-x236=1y29−x236=1
Step 1
Simplify each term in the equation in order to set the right side equal to 11. The standard form of an ellipse or hyperbola requires the right side of the equation be 11.
y29-x236=1y29−x236=1
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find the asymptotes of the hyperbola.
(y-k)2a2-(x-h)2b2=1(y−k)2a2−(x−h)2b2=1
Step 3
Match the values in this hyperbola to those of the standard form. The variable hh represents the x-offset from the origin, kk represents the y-offset from origin, aa.
a=3a=3
b=6b=6
k=0k=0
h=0h=0
Step 4
The asymptotes follow the form y=±a(x-h)b+ky=±a(x−h)b+k because this hyperbola opens up and down.
y=±12x+0y=±12x+0
Step 5
Step 5.1
Add 12x12x and 00.
y=12xy=12x
Step 5.2
Combine 1212 and xx.
y=x2y=x2
y=x2y=x2
Step 6
Step 6.1
Add -12x−12x and 00.
y=-12xy=−12x
Step 6.2
Combine xx and 1212.
y=-x2y=−x2
y=-x2y=−x2
Step 7
This hyperbola has two asymptotes.
y=x2,y=-x2y=x2,y=−x2
Step 8
The asymptotes are y=x2y=x2 and y=-x2y=−x2.
Asymptotes: y=x2,y=-x2y=x2,y=−x2
Step 9