Trigonometry Examples

Find the Sine Given the Point (-7,-8)
(-7,-8)
Step 1
To find the sin(θ) between the x-axis and the line between the points (0,0) and (-7,-8), draw the triangle between the three points (0,0), (-7,0), and (-7,-8).
Opposite : -8
Adjacent : -7
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2.
Tap for more steps...
Step 2.1
Raise -7 to the power of 2.
49+(-8)2
Step 2.2
Raise -8 to the power of 2.
49+64
Step 2.3
Add 49 and 64.
113
113
Step 3
sin(θ)=OppositeHypotenuse therefore sin(θ)=-8113.
-8113
Step 4
Simplify sin(θ).
Tap for more steps...
Step 4.1
Move the negative in front of the fraction.
sin(θ)=-8113
Step 4.2
Multiply 8113 by 113113.
sin(θ)=-(8113113113)
Step 4.3
Combine and simplify the denominator.
Tap for more steps...
Step 4.3.1
Multiply 8113 by 113113.
sin(θ)=-8113113113
Step 4.3.2
Raise 113 to the power of 1.
sin(θ)=-8113113113
Step 4.3.3
Raise 113 to the power of 1.
sin(θ)=-8113113113
Step 4.3.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=-81131131+1
Step 4.3.5
Add 1 and 1.
sin(θ)=-81131132
Step 4.3.6
Rewrite 1132 as 113.
Tap for more steps...
Step 4.3.6.1
Use nax=axn to rewrite 113 as 11312.
sin(θ)=-8113(11312)2
Step 4.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=-8113113122
Step 4.3.6.3
Combine 12 and 2.
sin(θ)=-811311322
Step 4.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.3.6.4.1
Cancel the common factor.
sin(θ)=-811311322
Step 4.3.6.4.2
Rewrite the expression.
sin(θ)=-8113113
sin(θ)=-8113113
Step 4.3.6.5
Evaluate the exponent.
sin(θ)=-8113113
sin(θ)=-8113113
sin(θ)=-8113113
sin(θ)=-8113113
Step 5
Approximate the result.
sin(θ)=-8113113-0.75257669
 [x2  12  π  xdx ]