Enter a problem...
Trigonometry Examples
SideAngleb=2c=a=A=45B=45C=90
Step 1
Step 1.1
The sine of an angle is equal to the ratio of the opposite side to the hypotenuse.
sin(B)=opphyp
Step 1.2
Substitute the name of each side into the definition of the sine function.
sin(B)=bc
Step 1.3
Set up the equation to solve for the hypotenuse, in this case c.
c=bsin(B)
Step 1.4
Substitute the values of each variable into the formula for sine.
c=2sin(45)
Step 1.5
Multiply the numerator by the reciprocal of the denominator.
c=2(2√2)
Step 1.6
Multiply 2√2 by √2√2.
c=2(2√2⋅√2√2)
Step 1.7
Combine and simplify the denominator.
Step 1.7.1
Multiply 2√2 by √2√2.
c=2(2√2√2√2)
Step 1.7.2
Raise √2 to the power of 1.
c=2(2√2√2√2)
Step 1.7.3
Raise √2 to the power of 1.
c=2(2√2√2√2)
Step 1.7.4
Use the power rule aman=am+n to combine exponents.
c=2(2√2√21+1)
Step 1.7.5
Add 1 and 1.
c=2(2√2√22)
Step 1.7.6
Rewrite √22 as 2.
Step 1.7.6.1
Use n√ax=axn to rewrite √2 as 212.
c=2(2√2(212)2)
Step 1.7.6.2
Apply the power rule and multiply exponents, (am)n=amn.
c=2(2√2212⋅2)
Step 1.7.6.3
Combine 12 and 2.
c=2(2√2222)
Step 1.7.6.4
Cancel the common factor of 2.
Step 1.7.6.4.1
Cancel the common factor.
c=2(2√2222)
Step 1.7.6.4.2
Rewrite the expression.
c=2(2√22)
c=2(2√22)
Step 1.7.6.5
Evaluate the exponent.
c=2(2√22)
c=2(2√22)
c=2(2√22)
Step 1.8
Cancel the common factor of 2.
Step 1.8.1
Cancel the common factor.
c=2(2√22)
Step 1.8.2
Rewrite the expression.
c=2√2
c=2√2
c=2√2
Step 2
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2
Step 2.2
Solve the equation for a.
a=√c2-b2
Step 2.3
Substitute the actual values into the equation.
a=√(2√2)2-(2)2
Step 2.4
Simplify the expression.
Step 2.4.1
Apply the product rule to 2√2.
a=√22√22-(2)2
Step 2.4.2
Raise 2 to the power of 2.
a=√4√22-(2)2
a=√4√22-(2)2
Step 2.5
Rewrite √22 as 2.
Step 2.5.1
Use n√ax=axn to rewrite √2 as 212.
a=√4(212)2-(2)2
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
a=√4⋅212⋅2-(2)2
Step 2.5.3
Combine 12 and 2.
a=√4⋅222-(2)2
Step 2.5.4
Cancel the common factor of 2.
Step 2.5.4.1
Cancel the common factor.
a=√4⋅222-(2)2
Step 2.5.4.2
Rewrite the expression.
a=√4⋅2-(2)2
a=√4⋅2-(2)2
Step 2.5.5
Evaluate the exponent.
a=√4⋅2-(2)2
a=√4⋅2-(2)2
Step 2.6
Simplify the expression.
Step 2.6.1
Multiply 4 by 2.
a=√8-(2)2
Step 2.6.2
Raise 2 to the power of 2.
a=√8-1⋅4
Step 2.6.3
Multiply -1 by 4.
a=√8-4
Step 2.6.4
Subtract 4 from 8.
a=√4
Step 2.6.5
Rewrite 4 as 22.
a=√22
a=√22
Step 2.7
Pull terms out from under the radical, assuming positive real numbers.
a=2
a=2
Step 3
These are the results for all angles and sides for the given triangle.
A=45
B=45
C=90
a=2
b=2
c=2√2