Trigonometry Examples

Solve the Triangle tri{35}{}{37}{}{12}{}
SideAngleb=35c=37a=12A=B=C=SideAngleb=35c=37a=12A=B=C=
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)a2=b2+c22bccos(A)
Step 2
Solve the equation.
A=arccos(b2+c2-a22bc)A=arccos(b2+c2a22bc)
Step 3
Substitute the known values into the equation.
A=arccos((35)2+(37)2-(12)22(35)(37))A=arccos((35)2+(37)2(12)22(35)(37))
Step 4
Simplify the results.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 3535 to the power of 22.
A=arccos(1225+372-1222(35)37)A=arccos(1225+3721222(35)37)
Step 4.1.2
Raise 3737 to the power of 22.
A=arccos(1225+1369-1222(35)37)A=arccos(1225+13691222(35)37)
Step 4.1.3
Raise 1212 to the power of 22.
A=arccos(1225+1369-11442(35)37)A=arccos(1225+136911442(35)37)
Step 4.1.4
Multiply -11 by 144144.
A=arccos(1225+1369-1442(35)37)A=arccos(1225+13691442(35)37)
Step 4.1.5
Add 12251225 and 13691369.
A=arccos(2594-1442(35)37)A=arccos(25941442(35)37)
Step 4.1.6
Subtract 144144 from 25942594.
A=arccos(24502(35)37)A=arccos(24502(35)37)
A=arccos(24502(35)37)A=arccos(24502(35)37)
Step 4.2
Simplify the denominator.
Tap for more steps...
Step 4.2.1
Multiply 22 by 3535.
A=arccos(24507037)A=arccos(24507037)
Step 4.2.2
Multiply 7070 by 3737.
A=arccos(24502590)A=arccos(24502590)
A=arccos(24502590)A=arccos(24502590)
Step 4.3
Cancel the common factor of 24502450 and 25902590.
Tap for more steps...
Step 4.3.1
Factor 7070 out of 24502450.
A=arccos(70(35)2590)A=arccos(70(35)2590)
Step 4.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.1
Factor 7070 out of 25902590.
A=arccos(70357037)A=arccos(70357037)
Step 4.3.2.2
Cancel the common factor.
A=arccos(70357037)
Step 4.3.2.3
Rewrite the expression.
A=arccos(3537)
A=arccos(3537)
A=arccos(3537)
Step 4.4
Evaluate arccos(3537).
A=18.92464441
A=18.92464441
Step 5
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
b2=a2+c2-2accos(B)
Step 6
Solve the equation.
B=arccos(a2+c2-b22ac)
Step 7
Substitute the known values into the equation.
B=arccos((12)2+(37)2-(35)22(12)(37))
Step 8
Simplify the results.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Raise 12 to the power of 2.
B=arccos(144+372-3522(12)37)
Step 8.1.2
Raise 37 to the power of 2.
B=arccos(144+1369-3522(12)37)
Step 8.1.3
Raise 35 to the power of 2.
B=arccos(144+1369-112252(12)37)
Step 8.1.4
Multiply -1 by 1225.
B=arccos(144+1369-12252(12)37)
Step 8.1.5
Add 144 and 1369.
B=arccos(1513-12252(12)37)
Step 8.1.6
Subtract 1225 from 1513.
B=arccos(2882(12)37)
B=arccos(2882(12)37)
Step 8.2
Simplify the denominator.
Tap for more steps...
Step 8.2.1
Multiply 2 by 12.
B=arccos(2882437)
Step 8.2.2
Multiply 24 by 37.
B=arccos(288888)
B=arccos(288888)
Step 8.3
Cancel the common factor of 288 and 888.
Tap for more steps...
Step 8.3.1
Factor 24 out of 288.
B=arccos(24(12)888)
Step 8.3.2
Cancel the common factors.
Tap for more steps...
Step 8.3.2.1
Factor 24 out of 888.
B=arccos(24122437)
Step 8.3.2.2
Cancel the common factor.
B=arccos(24122437)
Step 8.3.2.3
Rewrite the expression.
B=arccos(1237)
B=arccos(1237)
B=arccos(1237)
Step 8.4
Evaluate arccos(1237).
B=71.07535558
B=71.07535558
Step 9
The sum of all the angles in a triangle is 180 degrees.
18.92464441+C+71.07535558=180
Step 10
Solve the equation for C.
Tap for more steps...
Step 10.1
Add 18.92464441 and 71.07535558.
C+90=180
Step 10.2
Move all terms not containing C to the right side of the equation.
Tap for more steps...
Step 10.2.1
Subtract 90 from both sides of the equation.
C=180-90
Step 10.2.2
Subtract 90 from 180.
C=90
C=90
C=90
Step 11
These are the results for all angles and sides for the given triangle.
A=18.92464441
B=71.07535558
C=90
a=12
b=35
c=37
 [x2  12  π  xdx ]