Enter a problem...
Trigonometry Examples
SideAngleb=c=9a=A=45B=45C=90SideAngleb=c=9a=A=45B=45C=90
Step 1
Step 1.1
The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
cos(A)=adjhypcos(A)=adjhyp
Step 1.2
Substitute the name of each side into the definition of the cosine function.
cos(A)=bccos(A)=bc
Step 1.3
Set up the equation to solve for the adjacent side, in this case bb.
b=c⋅cos(A)b=c⋅cos(A)
Step 1.4
Substitute the values of each variable into the formula for cosine.
b=9⋅cos(45)b=9⋅cos(45)
Step 1.5
Combine 99 and √22√22.
b=9√22b=9√22
b=9√22b=9√22
Step 2
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 2.2
Solve the equation for aa.
a=√c2-b2a=√c2−b2
Step 2.3
Substitute the actual values into the equation.
a=√(9)2-(9√22)2a=
⎷(9)2−(9√22)2
Step 2.4
Raise 99 to the power of 22.
a=√81-(9√22)2a=
⎷81−(9√22)2
Step 2.5
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.5.1
Apply the product rule to 9√229√22.
a=√81-(9√2)222a=
⎷81−(9√2)222
Step 2.5.2
Apply the product rule to 9√29√2.
a=√81-92√2222a=√81−92√2222
a=√81-92√2222a=√81−92√2222
Step 2.6
Simplify the numerator.
Step 2.6.1
Raise 99 to the power of 22.
a=√81-81√2222a=√81−81√2222
Step 2.6.2
Rewrite √22√22 as 22.
Step 2.6.2.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
a=√81-81(212)222a=
⎷81−81(212)222
Step 2.6.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a=√81-81⋅212⋅222a=√81−81⋅212⋅222
Step 2.6.2.3
Combine 1212 and 22.
a=√81-81⋅22222a=√81−81⋅22222
Step 2.6.2.4
Cancel the common factor of 22.
Step 2.6.2.4.1
Cancel the common factor.
a=√81-81⋅22222a=
⎷81−81⋅22222
Step 2.6.2.4.2
Rewrite the expression.
a=√81-81⋅222a=√81−81⋅222
a=√81-81⋅222a=√81−81⋅222
Step 2.6.2.5
Evaluate the exponent.
a=√81-81⋅222a=√81−81⋅222
a=√81-81⋅222a=√81−81⋅222
a=√81-81⋅222a=√81−81⋅222
Step 2.7
Reduce the expression by cancelling the common factors.
Step 2.7.1
Raise 22 to the power of 22.
a=√81-81⋅24a=√81−81⋅24
Step 2.7.2
Multiply 8181 by 22.
a=√81-1624a=√81−1624
Step 2.7.3
Cancel the common factor of 162162 and 44.
Step 2.7.3.1
Factor 22 out of 162162.
a=√81-2(81)4a=√81−2(81)4
Step 2.7.3.2
Cancel the common factors.
Step 2.7.3.2.1
Factor 22 out of 44.
a=√81-2⋅812⋅2a=√81−2⋅812⋅2
Step 2.7.3.2.2
Cancel the common factor.
a=√81-2⋅812⋅2a=√81−2⋅812⋅2
Step 2.7.3.2.3
Rewrite the expression.
a=√81-812a=√81−812
a=√81-812a=√81−812
a=√81-812a=√81−812
a=√81-812a=√81−812
Step 2.8
To write 8181 as a fraction with a common denominator, multiply by 2222.
a=√81⋅22-812a=√81⋅22−812
Step 2.9
Combine 8181 and 2222.
a=√81⋅22-812a=√81⋅22−812
Step 2.10
Combine the numerators over the common denominator.
a=√81⋅2-812a=√81⋅2−812
Step 2.11
Simplify the numerator.
Step 2.11.1
Multiply 8181 by 22.
a=√162-812a=√162−812
Step 2.11.2
Subtract 8181 from 162162.
a=√812a=√812
a=√812a=√812
Step 2.12
Rewrite √812√812 as √81√2√81√2.
a=√81√2a=√81√2
Step 2.13
Simplify the numerator.
Step 2.13.1
Rewrite 8181 as 9292.
a=√92√2a=√92√2
Step 2.13.2
Pull terms out from under the radical, assuming positive real numbers.
a=9√2a=9√2
a=9√2a=9√2
Step 2.14
Multiply 9√29√2 by √2√2√2√2.
a=9√2⋅√2√2a=9√2⋅√2√2
Step 2.15
Combine and simplify the denominator.
Step 2.15.1
Multiply 9√29√2 by √2√2√2√2.
a=9√2√2√2a=9√2√2√2
Step 2.15.2
Raise √2√2 to the power of 11.
a=9√2√2√2a=9√2√2√2
Step 2.15.3
Raise √2√2 to the power of 11.
a=9√2√2√2a=9√2√2√2
Step 2.15.4
Use the power rule aman=am+naman=am+n to combine exponents.
a=9√2√21+1a=9√2√21+1
Step 2.15.5
Add 11 and 11.
a=9√2√22a=9√2√22
Step 2.15.6
Rewrite √22√22 as 22.
Step 2.15.6.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
a=9√2(212)2a=9√2(212)2
Step 2.15.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a=9√2212⋅2a=9√2212⋅2
Step 2.15.6.3
Combine 1212 and 22.
a=9√2222a=9√2222
Step 2.15.6.4
Cancel the common factor of 22.
Step 2.15.6.4.1
Cancel the common factor.
a=9√2222a=9√2222
Step 2.15.6.4.2
Rewrite the expression.
a=9√22a=9√22
a=9√22a=9√22
Step 2.15.6.5
Evaluate the exponent.
a=9√22a=9√22
a=9√22a=9√22
a=9√22a=9√22
a=9√22a=9√22
Step 3
These are the results for all angles and sides for the given triangle.
A=45A=45
B=45B=45
C=90C=90
a=9√22a=9√22
b=9√22b=9√22
c=9c=9