Trigonometry Examples

Solve the Triangle tri{}{45}{9}{45}{}{90}
SideAngleb=c=9a=A=45B=45C=90SideAngleb=c=9a=A=45B=45C=90
Step 1
Find bb.
Tap for more steps...
Step 1.1
The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
cos(A)=adjhypcos(A)=adjhyp
Step 1.2
Substitute the name of each side into the definition of the cosine function.
cos(A)=bccos(A)=bc
Step 1.3
Set up the equation to solve for the adjacent side, in this case bb.
b=ccos(A)b=ccos(A)
Step 1.4
Substitute the values of each variable into the formula for cosine.
b=9cos(45)b=9cos(45)
Step 1.5
Combine 99 and 2222.
b=922b=922
b=922b=922
Step 2
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 2.2
Solve the equation for aa.
a=c2-b2a=c2b2
Step 2.3
Substitute the actual values into the equation.
a=(9)2-(922)2a= (9)2(922)2
Step 2.4
Raise 99 to the power of 22.
a=81-(922)2a= 81(922)2
Step 2.5
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.5.1
Apply the product rule to 922922.
a=81-(92)222a=  81(92)222
Step 2.5.2
Apply the product rule to 9292.
a=81-922222a=81922222
a=81-922222a=81922222
Step 2.6
Simplify the numerator.
Tap for more steps...
Step 2.6.1
Raise 99 to the power of 22.
a=81-812222a=81812222
Step 2.6.2
Rewrite 2222 as 22.
Tap for more steps...
Step 2.6.2.1
Use nax=axnnax=axn to rewrite 22 as 212212.
a=81-81(212)222a=  8181(212)222
Step 2.6.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a=81-81212222a=8181212222
Step 2.6.2.3
Combine 1212 and 22.
a=81-8122222a=818122222
Step 2.6.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.6.2.4.1
Cancel the common factor.
a=81-8122222a= 818122222
Step 2.6.2.4.2
Rewrite the expression.
a=81-81222a=8181222
a=81-81222a=8181222
Step 2.6.2.5
Evaluate the exponent.
a=81-81222a=8181222
a=81-81222a=8181222
a=81-81222a=8181222
Step 2.7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.7.1
Raise 22 to the power of 22.
a=81-8124a=818124
Step 2.7.2
Multiply 8181 by 22.
a=81-1624a=811624
Step 2.7.3
Cancel the common factor of 162162 and 44.
Tap for more steps...
Step 2.7.3.1
Factor 22 out of 162162.
a=81-2(81)4a=812(81)4
Step 2.7.3.2
Cancel the common factors.
Tap for more steps...
Step 2.7.3.2.1
Factor 22 out of 44.
a=81-28122a=8128122
Step 2.7.3.2.2
Cancel the common factor.
a=81-28122a=8128122
Step 2.7.3.2.3
Rewrite the expression.
a=81-812a=81812
a=81-812a=81812
a=81-812a=81812
a=81-812a=81812
Step 2.8
To write 8181 as a fraction with a common denominator, multiply by 2222.
a=8122-812a=8122812
Step 2.9
Combine 8181 and 2222.
a=8122-812a=8122812
Step 2.10
Combine the numerators over the common denominator.
a=812-812a=812812
Step 2.11
Simplify the numerator.
Tap for more steps...
Step 2.11.1
Multiply 8181 by 22.
a=162-812a=162812
Step 2.11.2
Subtract 8181 from 162162.
a=812a=812
a=812a=812
Step 2.12
Rewrite 812812 as 812812.
a=812a=812
Step 2.13
Simplify the numerator.
Tap for more steps...
Step 2.13.1
Rewrite 8181 as 9292.
a=922a=922
Step 2.13.2
Pull terms out from under the radical, assuming positive real numbers.
a=92a=92
a=92a=92
Step 2.14
Multiply 9292 by 2222.
a=9222a=9222
Step 2.15
Combine and simplify the denominator.
Tap for more steps...
Step 2.15.1
Multiply 9292 by 2222.
a=9222a=9222
Step 2.15.2
Raise 22 to the power of 11.
a=9222a=9222
Step 2.15.3
Raise 22 to the power of 11.
a=9222a=9222
Step 2.15.4
Use the power rule aman=am+naman=am+n to combine exponents.
a=9221+1a=9221+1
Step 2.15.5
Add 11 and 11.
a=9222a=9222
Step 2.15.6
Rewrite 2222 as 22.
Tap for more steps...
Step 2.15.6.1
Use nax=axnnax=axn to rewrite 22 as 212212.
a=92(212)2a=92(212)2
Step 2.15.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a=922122a=922122
Step 2.15.6.3
Combine 1212 and 22.
a=92222a=92222
Step 2.15.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.15.6.4.1
Cancel the common factor.
a=92222a=92222
Step 2.15.6.4.2
Rewrite the expression.
a=922a=922
a=922a=922
Step 2.15.6.5
Evaluate the exponent.
a=922a=922
a=922a=922
a=922a=922
a=922a=922
Step 3
These are the results for all angles and sides for the given triangle.
A=45A=45
B=45B=45
C=90C=90
a=922a=922
b=922b=922
c=9c=9
 [x2  12  π  xdx ]  x2  12  π  xdx