Trigonometry Examples

Find Trig Functions Using Identities sin(theta)=( square root of 7)/4 , cos(theta)=3/4
sin(θ)=74sin(θ)=74 , cos(θ)=34cos(θ)=34
Step 1
To find the value of tan(θ)tan(θ), use the fact that tan(θ)=sin(θ)cos(θ)tan(θ)=sin(θ)cos(θ) then substitute in the known values.
tan(θ)=sin(θ)cos(θ)=7434tan(θ)=sin(θ)cos(θ)=7434
Step 2
Simplify the result.
Tap for more steps...
Step 2.1
Multiply the numerator by the reciprocal of the denominator.
tan(θ)=sin(θ)cos(θ)=7443tan(θ)=sin(θ)cos(θ)=7443
Step 2.2
Cancel the common factor of 44.
Tap for more steps...
Step 2.2.1
Cancel the common factor.
tan(θ)=sin(θ)cos(θ)=7443
Step 2.2.2
Rewrite the expression.
tan(θ)=sin(θ)cos(θ)=7(13)
tan(θ)=sin(θ)cos(θ)=7(13)
Step 2.3
Combine 7 and 13.
tan(θ)=sin(θ)cos(θ)=73
tan(θ)=sin(θ)cos(θ)=73
Step 3
To find the value of cot(θ), use the fact that 1tan(θ) then substitute in the known values.
cot(θ)=1tan(θ)=173
Step 4
Simplify the result.
Tap for more steps...
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
cot(θ)=1tan(θ)=1(37)
Step 4.2
Multiply 37 by 1.
cot(θ)=1tan(θ)=37
Step 4.3
Multiply 37 by 77.
cot(θ)=1tan(θ)=3777
Step 4.4
Combine and simplify the denominator.
Tap for more steps...
Step 4.4.1
Multiply 37 by 77.
cot(θ)=1tan(θ)=3777
Step 4.4.2
Raise 7 to the power of 1.
cot(θ)=1tan(θ)=3777
Step 4.4.3
Raise 7 to the power of 1.
cot(θ)=1tan(θ)=3777
Step 4.4.4
Use the power rule aman=am+n to combine exponents.
cot(θ)=1tan(θ)=3771+1
Step 4.4.5
Add 1 and 1.
cot(θ)=1tan(θ)=3772
Step 4.4.6
Rewrite 72 as 7.
Tap for more steps...
Step 4.4.6.1
Use nax=axn to rewrite 7 as 712.
cot(θ)=1tan(θ)=37(712)2
Step 4.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(θ)=1tan(θ)=377122
Step 4.4.6.3
Combine 12 and 2.
cot(θ)=1tan(θ)=37722
Step 4.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.4.6.4.1
Cancel the common factor.
cot(θ)=1tan(θ)=37722
Step 4.4.6.4.2
Rewrite the expression.
cot(θ)=1tan(θ)=377
cot(θ)=1tan(θ)=377
Step 4.4.6.5
Evaluate the exponent.
cot(θ)=1tan(θ)=377
cot(θ)=1tan(θ)=377
cot(θ)=1tan(θ)=377
cot(θ)=1tan(θ)=377
Step 5
To find the value of sec(θ), use the fact that 1cos(θ) then substitute in the known values.
sec(θ)=1cos(θ)=134
Step 6
Simplify the result.
Tap for more steps...
Step 6.1
Multiply the numerator by the reciprocal of the denominator.
sec(θ)=1cos(θ)=1(43)
Step 6.2
Multiply 43 by 1.
sec(θ)=1cos(θ)=43
sec(θ)=1cos(θ)=43
Step 7
To find the value of csc(θ), use the fact that 1sin(θ) then substitute in the known values.
csc(θ)=1sin(θ)=174
Step 8
Simplify the result.
Tap for more steps...
Step 8.1
Multiply the numerator by the reciprocal of the denominator.
csc(θ)=1sin(θ)=1(47)
Step 8.2
Multiply 47 by 1.
csc(θ)=1sin(θ)=47
Step 8.3
Multiply 47 by 77.
csc(θ)=1sin(θ)=4777
Step 8.4
Combine and simplify the denominator.
Tap for more steps...
Step 8.4.1
Multiply 47 by 77.
csc(θ)=1sin(θ)=4777
Step 8.4.2
Raise 7 to the power of 1.
csc(θ)=1sin(θ)=4777
Step 8.4.3
Raise 7 to the power of 1.
csc(θ)=1sin(θ)=4777
Step 8.4.4
Use the power rule aman=am+n to combine exponents.
csc(θ)=1sin(θ)=4771+1
Step 8.4.5
Add 1 and 1.
csc(θ)=1sin(θ)=4772
Step 8.4.6
Rewrite 72 as 7.
Tap for more steps...
Step 8.4.6.1
Use nax=axn to rewrite 7 as 712.
csc(θ)=1sin(θ)=47(712)2
Step 8.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=1sin(θ)=477122
Step 8.4.6.3
Combine 12 and 2.
csc(θ)=1sin(θ)=47722
Step 8.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.4.6.4.1
Cancel the common factor.
csc(θ)=1sin(θ)=47722
Step 8.4.6.4.2
Rewrite the expression.
csc(θ)=1sin(θ)=477
csc(θ)=1sin(θ)=477
Step 8.4.6.5
Evaluate the exponent.
csc(θ)=1sin(θ)=477
csc(θ)=1sin(θ)=477
csc(θ)=1sin(θ)=477
csc(θ)=1sin(θ)=477
Step 9
The trig functions found are as follows:
sin(θ)=74
cos(θ)=34
tan(θ)=73
cot(θ)=377
sec(θ)=43
csc(θ)=477
 [x2  12  π  xdx ]