Enter a problem...
Trigonometry Examples
sin(θ)=√74sin(θ)=√74 , cos(θ)=34cos(θ)=34
Step 1
To find the value of tan(θ)tan(θ), use the fact that tan(θ)=sin(θ)cos(θ)tan(θ)=sin(θ)cos(θ) then substitute in the known values.
tan(θ)=sin(θ)cos(θ)=√7434tan(θ)=sin(θ)cos(θ)=√7434
Step 2
Step 2.1
Multiply the numerator by the reciprocal of the denominator.
tan(θ)=sin(θ)cos(θ)=√74⋅43tan(θ)=sin(θ)cos(θ)=√74⋅43
Step 2.2
Cancel the common factor of 44.
Step 2.2.1
Cancel the common factor.
tan(θ)=sin(θ)cos(θ)=√74⋅43
Step 2.2.2
Rewrite the expression.
tan(θ)=sin(θ)cos(θ)=√7(13)
tan(θ)=sin(θ)cos(θ)=√7(13)
Step 2.3
Combine √7 and 13.
tan(θ)=sin(θ)cos(θ)=√73
tan(θ)=sin(θ)cos(θ)=√73
Step 3
To find the value of cot(θ), use the fact that 1tan(θ) then substitute in the known values.
cot(θ)=1tan(θ)=1√73
Step 4
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
cot(θ)=1tan(θ)=1(3√7)
Step 4.2
Multiply 3√7 by 1.
cot(θ)=1tan(θ)=3√7
Step 4.3
Multiply 3√7 by √7√7.
cot(θ)=1tan(θ)=3√7⋅√7√7
Step 4.4
Combine and simplify the denominator.
Step 4.4.1
Multiply 3√7 by √7√7.
cot(θ)=1tan(θ)=3√7√7√7
Step 4.4.2
Raise √7 to the power of 1.
cot(θ)=1tan(θ)=3√7√7√7
Step 4.4.3
Raise √7 to the power of 1.
cot(θ)=1tan(θ)=3√7√7√7
Step 4.4.4
Use the power rule aman=am+n to combine exponents.
cot(θ)=1tan(θ)=3√7√71+1
Step 4.4.5
Add 1 and 1.
cot(θ)=1tan(θ)=3√7√72
Step 4.4.6
Rewrite √72 as 7.
Step 4.4.6.1
Use n√ax=axn to rewrite √7 as 712.
cot(θ)=1tan(θ)=3√7(712)2
Step 4.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(θ)=1tan(θ)=3√7712⋅2
Step 4.4.6.3
Combine 12 and 2.
cot(θ)=1tan(θ)=3√7722
Step 4.4.6.4
Cancel the common factor of 2.
Step 4.4.6.4.1
Cancel the common factor.
cot(θ)=1tan(θ)=3√7722
Step 4.4.6.4.2
Rewrite the expression.
cot(θ)=1tan(θ)=3√77
cot(θ)=1tan(θ)=3√77
Step 4.4.6.5
Evaluate the exponent.
cot(θ)=1tan(θ)=3√77
cot(θ)=1tan(θ)=3√77
cot(θ)=1tan(θ)=3√77
cot(θ)=1tan(θ)=3√77
Step 5
To find the value of sec(θ), use the fact that 1cos(θ) then substitute in the known values.
sec(θ)=1cos(θ)=134
Step 6
Step 6.1
Multiply the numerator by the reciprocal of the denominator.
sec(θ)=1cos(θ)=1(43)
Step 6.2
Multiply 43 by 1.
sec(θ)=1cos(θ)=43
sec(θ)=1cos(θ)=43
Step 7
To find the value of csc(θ), use the fact that 1sin(θ) then substitute in the known values.
csc(θ)=1sin(θ)=1√74
Step 8
Step 8.1
Multiply the numerator by the reciprocal of the denominator.
csc(θ)=1sin(θ)=1(4√7)
Step 8.2
Multiply 4√7 by 1.
csc(θ)=1sin(θ)=4√7
Step 8.3
Multiply 4√7 by √7√7.
csc(θ)=1sin(θ)=4√7⋅√7√7
Step 8.4
Combine and simplify the denominator.
Step 8.4.1
Multiply 4√7 by √7√7.
csc(θ)=1sin(θ)=4√7√7√7
Step 8.4.2
Raise √7 to the power of 1.
csc(θ)=1sin(θ)=4√7√7√7
Step 8.4.3
Raise √7 to the power of 1.
csc(θ)=1sin(θ)=4√7√7√7
Step 8.4.4
Use the power rule aman=am+n to combine exponents.
csc(θ)=1sin(θ)=4√7√71+1
Step 8.4.5
Add 1 and 1.
csc(θ)=1sin(θ)=4√7√72
Step 8.4.6
Rewrite √72 as 7.
Step 8.4.6.1
Use n√ax=axn to rewrite √7 as 712.
csc(θ)=1sin(θ)=4√7(712)2
Step 8.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=1sin(θ)=4√7712⋅2
Step 8.4.6.3
Combine 12 and 2.
csc(θ)=1sin(θ)=4√7722
Step 8.4.6.4
Cancel the common factor of 2.
Step 8.4.6.4.1
Cancel the common factor.
csc(θ)=1sin(θ)=4√7722
Step 8.4.6.4.2
Rewrite the expression.
csc(θ)=1sin(θ)=4√77
csc(θ)=1sin(θ)=4√77
Step 8.4.6.5
Evaluate the exponent.
csc(θ)=1sin(θ)=4√77
csc(θ)=1sin(θ)=4√77
csc(θ)=1sin(θ)=4√77
csc(θ)=1sin(θ)=4√77
Step 9
The trig functions found are as follows:
sin(θ)=√74
cos(θ)=34
tan(θ)=√73
cot(θ)=3√77
sec(θ)=43
csc(θ)=4√77