Trigonometry Examples

Expand the Trigonometric Expression sin(arctan(u)+arcsin(v))
sin(tan-1(u)+sin-1(v))sin(tan−1(u)+sin−1(v))
Step 1
Apply the sum of angles identity.
sin(tan-1(u))cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))sin(tan−1(u))cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Draw a triangle in the plane with vertices (1,u)(1,u), (1,0)(1,0), and the origin. Then tan-1(u)tan−1(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1,u)(1,u). Therefore, sin(tan-1(u))sin(tan−1(u)) is u1+u2u1+u2.
u1+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.2
Multiply u1+u2u1+u2 by 1+u21+u21+u21+u2.
u1+u21+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u21+u21+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3
Combine and simplify the denominator.
Tap for more steps...
Step 2.1.3.1
Multiply u1+u2u1+u2 by 1+u21+u21+u21+u2.
u1+u21+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u21+u21+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.2
Raise 1+u21+u2 to the power of 11.
u1+u21+u211+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u21+u211+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.3
Raise 1+u21+u2 to the power of 11.
u1+u21+u211+u21cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u21+u211+u21cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
u1+u21+u21+1cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u21+u21+1cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.5
Add 11 and 11.
u1+u21+u22cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u21+u22cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6
Rewrite 1+u221+u22 as 1+u21+u2.
Tap for more steps...
Step 2.1.3.6.1
Use nax=axnnax=axn to rewrite 1+u21+u2 as (1+u2)12(1+u2)12.
u1+u2((1+u2)12)2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u2((1+u2)12)2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
u1+u2(1+u2)122cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u2(1+u2)122cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6.3
Combine 1212 and 22.
u1+u2(1+u2)22cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u1+u2(1+u2)22cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.1.3.6.4.1
Cancel the common factor.
u1+u2(1+u2)22cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
Step 2.1.3.6.4.2
Rewrite the expression.
u1+u2(1+u2)1cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
u1+u2(1+u2)1cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
Step 2.1.3.6.5
Simplify.
u1+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
u1+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
u1+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
Step 2.1.4
Draw a triangle in the plane with vertices (12-v2,v), (12-v2,0), and the origin. Then sin-1(v) is the angle between the positive x-axis and the ray beginning at the origin and passing through (12-v2,v). Therefore, cos(sin-1(v)) is 1-v2.
u1+u21+u21-v2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.5
Rewrite 1 as 12.
u1+u21+u212-v2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=v.
u1+u21+u2(1+v)(1-v)+cos(tan-1(u))sin(sin-1(v))
Step 2.1.7
Multiply u1+u21+u2(1+v)(1-v).
Tap for more steps...
Step 2.1.7.1
Combine u1+u21+u2 and (1+v)(1-v).
u1+u2(1+v)(1-v)1+u2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.7.2
Combine using the product rule for radicals.
u(1+v)(1-v)(1+u2)1+u2+cos(tan-1(u))sin(sin-1(v))
u(1+v)(1-v)(1+u2)1+u2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.8
Draw a triangle in the plane with vertices (1,u), (1,0), and the origin. Then tan-1(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1,u). Therefore, cos(tan-1(u)) is 11+u2.
u(1+v)(1-v)(1+u2)1+u2+11+u2sin(sin-1(v))
Step 2.1.9
Multiply 11+u2 by 1+u21+u2.
u(1+v)(1-v)(1+u2)1+u2+11+u21+u21+u2sin(sin-1(v))
Step 2.1.10
Combine and simplify the denominator.
Tap for more steps...
Step 2.1.10.1
Multiply 11+u2 by 1+u21+u2.
u(1+v)(1-v)(1+u2)1+u2+1+u21+u21+u2sin(sin-1(v))
Step 2.1.10.2
Raise 1+u2 to the power of 1.
u(1+v)(1-v)(1+u2)1+u2+1+u21+u211+u2sin(sin-1(v))
Step 2.1.10.3
Raise 1+u2 to the power of 1.
u(1+v)(1-v)(1+u2)1+u2+1+u21+u211+u21sin(sin-1(v))
Step 2.1.10.4
Use the power rule aman=am+n to combine exponents.
u(1+v)(1-v)(1+u2)1+u2+1+u21+u21+1sin(sin-1(v))
Step 2.1.10.5
Add 1 and 1.
u(1+v)(1-v)(1+u2)1+u2+1+u21+u22sin(sin-1(v))
Step 2.1.10.6
Rewrite 1+u22 as 1+u2.
Tap for more steps...
Step 2.1.10.6.1
Use nax=axn to rewrite 1+u2 as (1+u2)12.
u(1+v)(1-v)(1+u2)1+u2+1+u2((1+u2)12)2sin(sin-1(v))
Step 2.1.10.6.2
Apply the power rule and multiply exponents, (am)n=amn.
u(1+v)(1-v)(1+u2)1+u2+1+u2(1+u2)122sin(sin-1(v))
Step 2.1.10.6.3
Combine 12 and 2.
u(1+v)(1-v)(1+u2)1+u2+1+u2(1+u2)22sin(sin-1(v))
Step 2.1.10.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.10.6.4.1
Cancel the common factor.
u(1+v)(1-v)(1+u2)1+u2+1+u2(1+u2)22sin(sin-1(v))
Step 2.1.10.6.4.2
Rewrite the expression.
u(1+v)(1-v)(1+u2)1+u2+1+u2(1+u2)1sin(sin-1(v))
u(1+v)(1-v)(1+u2)1+u2+1+u2(1+u2)1sin(sin-1(v))
Step 2.1.10.6.5
Simplify.
u(1+v)(1-v)(1+u2)1+u2+1+u21+u2sin(sin-1(v))
u(1+v)(1-v)(1+u2)1+u2+1+u21+u2sin(sin-1(v))
u(1+v)(1-v)(1+u2)1+u2+1+u21+u2sin(sin-1(v))
Step 2.1.11
The functions sine and arcsine are inverses.
u(1+v)(1-v)(1+u2)1+u2+1+u21+u2v
Step 2.1.12
Combine 1+u21+u2 and v.
u(1+v)(1-v)(1+u2)1+u2+1+u2v1+u2
u(1+v)(1-v)(1+u2)1+u2+1+u2v1+u2
Step 2.2
Combine the numerators over the common denominator.
u(1+v)(1-v)(1+u2)+1+u2v1+u2
u(1+v)(1-v)(1+u2)+1+u2v1+u2
 [x2  12  π  xdx ]