Enter a problem...
Trigonometry Examples
sin(tan-1(u)+sin-1(v))sin(tan−1(u)+sin−1(v))
Step 1
Apply the sum of angles identity.
sin(tan-1(u))cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))sin(tan−1(u))cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Draw a triangle in the plane with vertices (1,u)(1,u), (1,0)(1,0), and the origin. Then tan-1(u)tan−1(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1,u)(1,u). Therefore, sin(tan-1(u))sin(tan−1(u)) is u√1+u2u√1+u2.
u√1+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.2
Multiply u√1+u2u√1+u2 by √1+u2√1+u2√1+u2√1+u2.
u√1+u2⋅√1+u2√1+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2⋅√1+u2√1+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3
Combine and simplify the denominator.
Step 2.1.3.1
Multiply u√1+u2u√1+u2 by √1+u2√1+u2√1+u2√1+u2.
u√1+u2√1+u2√1+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2√1+u2√1+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.2
Raise √1+u2√1+u2 to the power of 11.
u√1+u2√1+u21√1+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2√1+u21√1+u2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.3
Raise √1+u2√1+u2 to the power of 11.
u√1+u2√1+u21√1+u21cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2√1+u21√1+u21cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
u√1+u2√1+u21+1cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2√1+u21+1cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.5
Add 11 and 11.
u√1+u2√1+u22cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2√1+u22cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6
Rewrite √1+u22√1+u22 as 1+u21+u2.
Step 2.1.3.6.1
Use n√ax=axnn√ax=axn to rewrite √1+u2√1+u2 as (1+u2)12(1+u2)12.
u√1+u2((1+u2)12)2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2((1+u2)12)2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
u√1+u2(1+u2)12⋅2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2(1+u2)12⋅2cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6.3
Combine 1212 and 22.
u√1+u2(1+u2)22cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))u√1+u2(1+u2)22cos(sin−1(v))+cos(tan−1(u))sin(sin−1(v))
Step 2.1.3.6.4
Cancel the common factor of 22.
Step 2.1.3.6.4.1
Cancel the common factor.
u√1+u2(1+u2)22cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
Step 2.1.3.6.4.2
Rewrite the expression.
u√1+u2(1+u2)1cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
u√1+u2(1+u2)1cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
Step 2.1.3.6.5
Simplify.
u√1+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
u√1+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
u√1+u21+u2cos(sin-1(v))+cos(tan-1(u))sin(sin-1(v))
Step 2.1.4
Draw a triangle in the plane with vertices (√12-v2,v), (√12-v2,0), and the origin. Then sin-1(v) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√12-v2,v). Therefore, cos(sin-1(v)) is √1-v2.
u√1+u21+u2√1-v2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.5
Rewrite 1 as 12.
u√1+u21+u2√12-v2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=v.
u√1+u21+u2√(1+v)(1-v)+cos(tan-1(u))sin(sin-1(v))
Step 2.1.7
Multiply u√1+u21+u2√(1+v)(1-v).
Step 2.1.7.1
Combine u√1+u21+u2 and √(1+v)(1-v).
u√1+u2√(1+v)(1-v)1+u2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.7.2
Combine using the product rule for radicals.
u√(1+v)(1-v)(1+u2)1+u2+cos(tan-1(u))sin(sin-1(v))
u√(1+v)(1-v)(1+u2)1+u2+cos(tan-1(u))sin(sin-1(v))
Step 2.1.8
Draw a triangle in the plane with vertices (1,u), (1,0), and the origin. Then tan-1(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1,u). Therefore, cos(tan-1(u)) is 1√1+u2.
u√(1+v)(1-v)(1+u2)1+u2+1√1+u2sin(sin-1(v))
Step 2.1.9
Multiply 1√1+u2 by √1+u2√1+u2.
u√(1+v)(1-v)(1+u2)1+u2+1√1+u2⋅√1+u2√1+u2sin(sin-1(v))
Step 2.1.10
Combine and simplify the denominator.
Step 2.1.10.1
Multiply 1√1+u2 by √1+u2√1+u2.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2√1+u2√1+u2sin(sin-1(v))
Step 2.1.10.2
Raise √1+u2 to the power of 1.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2√1+u21√1+u2sin(sin-1(v))
Step 2.1.10.3
Raise √1+u2 to the power of 1.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2√1+u21√1+u21sin(sin-1(v))
Step 2.1.10.4
Use the power rule aman=am+n to combine exponents.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2√1+u21+1sin(sin-1(v))
Step 2.1.10.5
Add 1 and 1.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2√1+u22sin(sin-1(v))
Step 2.1.10.6
Rewrite √1+u22 as 1+u2.
Step 2.1.10.6.1
Use n√ax=axn to rewrite √1+u2 as (1+u2)12.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2((1+u2)12)2sin(sin-1(v))
Step 2.1.10.6.2
Apply the power rule and multiply exponents, (am)n=amn.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2(1+u2)12⋅2sin(sin-1(v))
Step 2.1.10.6.3
Combine 12 and 2.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2(1+u2)22sin(sin-1(v))
Step 2.1.10.6.4
Cancel the common factor of 2.
Step 2.1.10.6.4.1
Cancel the common factor.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2(1+u2)22sin(sin-1(v))
Step 2.1.10.6.4.2
Rewrite the expression.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2(1+u2)1sin(sin-1(v))
u√(1+v)(1-v)(1+u2)1+u2+√1+u2(1+u2)1sin(sin-1(v))
Step 2.1.10.6.5
Simplify.
u√(1+v)(1-v)(1+u2)1+u2+√1+u21+u2sin(sin-1(v))
u√(1+v)(1-v)(1+u2)1+u2+√1+u21+u2sin(sin-1(v))
u√(1+v)(1-v)(1+u2)1+u2+√1+u21+u2sin(sin-1(v))
Step 2.1.11
The functions sine and arcsine are inverses.
u√(1+v)(1-v)(1+u2)1+u2+√1+u21+u2v
Step 2.1.12
Combine √1+u21+u2 and v.
u√(1+v)(1-v)(1+u2)1+u2+√1+u2v1+u2
u√(1+v)(1-v)(1+u2)1+u2+√1+u2v1+u2
Step 2.2
Combine the numerators over the common denominator.
u√(1+v)(1-v)(1+u2)+√1+u2v1+u2
u√(1+v)(1-v)(1+u2)+√1+u2v1+u2