Enter a problem...
Trigonometry Examples
sin(θ)=34sin(θ)=34
Step 1
Use the definition of sine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sin(θ)=oppositehypotenusesin(θ)=oppositehypotenuse
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=√hypotenuse2-opposite2Adjacent=√hypotenuse2−opposite2
Step 3
Replace the known values in the equation.
Adjacent=√(4)2-(3)2Adjacent=√(4)2−(3)2
Step 4
Step 4.1
Raise 44 to the power of 22.
Adjacent =√16-(3)2=√16−(3)2
Step 4.2
Raise 33 to the power of 22.
Adjacent =√16-1⋅9=√16−1⋅9
Step 4.3
Multiply -1−1 by 99.
Adjacent =√16-9=√16−9
Step 4.4
Subtract 99 from 1616.
Adjacent =√7=√7
Adjacent =√7=√7
Step 5
Step 5.1
Use the definition of cosine to find the value of cos(θ)cos(θ).
cos(θ)=adjhypcos(θ)=adjhyp
Step 5.2
Substitute in the known values.
cos(θ)=√74cos(θ)=√74
cos(θ)=√74cos(θ)=√74
Step 6
Step 6.1
Use the definition of tangent to find the value of tan(θ)tan(θ).
tan(θ)=oppadjtan(θ)=oppadj
Step 6.2
Substitute in the known values.
tan(θ)=3√7tan(θ)=3√7
Step 6.3
Simplify the value of tan(θ)tan(θ).
Step 6.3.1
Multiply 3√73√7 by √7√7√7√7.
tan(θ)=3√7⋅√7√7tan(θ)=3√7⋅√7√7
Step 6.3.2
Combine and simplify the denominator.
Step 6.3.2.1
Multiply 3√73√7 by √7√7√7√7.
tan(θ)=3√7√7√7tan(θ)=3√7√7√7
Step 6.3.2.2
Raise √7√7 to the power of 11.
tan(θ)=3√7√7√7tan(θ)=3√7√7√7
Step 6.3.2.3
Raise √7√7 to the power of 11.
tan(θ)=3√7√7√7tan(θ)=3√7√7√7
Step 6.3.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
tan(θ)=3√7√71+1tan(θ)=3√7√71+1
Step 6.3.2.5
Add 11 and 11.
tan(θ)=3√7√72tan(θ)=3√7√72
Step 6.3.2.6
Rewrite √72√72 as 77.
Step 6.3.2.6.1
Use n√ax=axnn√ax=axn to rewrite √7√7 as 712712.
tan(θ)=3√7(712)2tan(θ)=3√7(712)2
Step 6.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
tan(θ)=3√7712⋅2tan(θ)=3√7712⋅2
Step 6.3.2.6.3
Combine 1212 and 22.
tan(θ)=3√7722tan(θ)=3√7722
Step 6.3.2.6.4
Cancel the common factor of 22.
Step 6.3.2.6.4.1
Cancel the common factor.
tan(θ)=3√7722
Step 6.3.2.6.4.2
Rewrite the expression.
tan(θ)=3√77
tan(θ)=3√77
Step 6.3.2.6.5
Evaluate the exponent.
tan(θ)=3√77
tan(θ)=3√77
tan(θ)=3√77
tan(θ)=3√77
tan(θ)=3√77
Step 7
Step 7.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 7.2
Substitute in the known values.
cot(θ)=√73
cot(θ)=√73
Step 8
Step 8.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 8.2
Substitute in the known values.
sec(θ)=4√7
Step 8.3
Simplify the value of sec(θ).
Step 8.3.1
Multiply 4√7 by √7√7.
sec(θ)=4√7⋅√7√7
Step 8.3.2
Combine and simplify the denominator.
Step 8.3.2.1
Multiply 4√7 by √7√7.
sec(θ)=4√7√7√7
Step 8.3.2.2
Raise √7 to the power of 1.
sec(θ)=4√7√7√7
Step 8.3.2.3
Raise √7 to the power of 1.
sec(θ)=4√7√7√7
Step 8.3.2.4
Use the power rule aman=am+n to combine exponents.
sec(θ)=4√7√71+1
Step 8.3.2.5
Add 1 and 1.
sec(θ)=4√7√72
Step 8.3.2.6
Rewrite √72 as 7.
Step 8.3.2.6.1
Use n√ax=axn to rewrite √7 as 712.
sec(θ)=4√7(712)2
Step 8.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(θ)=4√7712⋅2
Step 8.3.2.6.3
Combine 12 and 2.
sec(θ)=4√7722
Step 8.3.2.6.4
Cancel the common factor of 2.
Step 8.3.2.6.4.1
Cancel the common factor.
sec(θ)=4√7722
Step 8.3.2.6.4.2
Rewrite the expression.
sec(θ)=4√77
sec(θ)=4√77
Step 8.3.2.6.5
Evaluate the exponent.
sec(θ)=4√77
sec(θ)=4√77
sec(θ)=4√77
sec(θ)=4√77
sec(θ)=4√77
Step 9
Step 9.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 9.2
Substitute in the known values.
csc(θ)=43
csc(θ)=43
Step 10
This is the solution to each trig value.
sin(θ)=34
cos(θ)=√74
tan(θ)=3√77
cot(θ)=√73
sec(θ)=4√77
csc(θ)=43