Enter a problem...
Trigonometry Examples
x2+y2-6x=0x2+y2−6x=0
Step 1
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=-6b=−6
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=-62⋅1d=−62⋅1
Step 1.3.2
Cancel the common factor of -6−6 and 22.
Step 1.3.2.1
Factor 22 out of -6−6.
d=2⋅-32⋅1d=2⋅−32⋅1
Step 1.3.2.2
Cancel the common factors.
Step 1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅-32(1)d=2⋅−32(1)
Step 1.3.2.2.2
Cancel the common factor.
d=2⋅-32⋅1
Step 1.3.2.2.3
Rewrite the expression.
d=-31
Step 1.3.2.2.4
Divide -3 by 1.
d=-3
d=-3
d=-3
d=-3
Step 1.4
Find the value of e using the formula e=c-b24a.
Step 1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-6)24⋅1
Step 1.4.2
Simplify the right side.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Raise -6 to the power of 2.
e=0-364⋅1
Step 1.4.2.1.2
Multiply 4 by 1.
e=0-364
Step 1.4.2.1.3
Divide 36 by 4.
e=0-1⋅9
Step 1.4.2.1.4
Multiply -1 by 9.
e=0-9
e=0-9
Step 1.4.2.2
Subtract 9 from 0.
e=-9
e=-9
e=-9
Step 1.5
Substitute the values of a, d, and e into the vertex form (x-3)2-9.
(x-3)2-9
(x-3)2-9
Step 2
Substitute (x-3)2-9 for x2-6x in the equation x2+y2-6x=0.
(x-3)2-9+y2=0
Step 3
Move -9 to the right side of the equation by adding 9 to both sides.
(x-3)2+y2=0+9
Step 4
Add 0 and 9.
(x-3)2+y2=9