Enter a problem...
Trigonometry Examples
x2=8y
Step 1
Step 1.1
Isolate y to the left side of the equation.
Step 1.1.1
Rewrite the equation as 8y=x2.
8y=x2
Step 1.1.2
Divide each term in 8y=x2 by 8 and simplify.
Step 1.1.2.1
Divide each term in 8y=x2 by 8.
8y8=x28
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of 8.
Step 1.1.2.2.1.1
Cancel the common factor.
8y8=x28
Step 1.1.2.2.1.2
Divide y by 1.
y=x28
y=x28
y=x28
y=x28
y=x28
Step 1.2
Complete the square for x28.
Step 1.2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=18
b=0
c=0
Step 1.2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.2.3
Find the value of d using the formula d=b2a.
Step 1.2.3.1
Substitute the values of a and b into the formula d=b2a.
d=02(18)
Step 1.2.3.2
Simplify the right side.
Step 1.2.3.2.1
Cancel the common factor of 0 and 2.
Step 1.2.3.2.1.1
Factor 2 out of 0.
d=2(0)2(18)
Step 1.2.3.2.1.2
Cancel the common factors.
Step 1.2.3.2.1.2.1
Cancel the common factor.
d=2⋅02(18)
Step 1.2.3.2.1.2.2
Rewrite the expression.
d=018
d=018
d=018
Step 1.2.3.2.2
Multiply the numerator by the reciprocal of the denominator.
d=0⋅8
Step 1.2.3.2.3
Multiply 0 by 8.
d=0
d=0
d=0
Step 1.2.4
Find the value of e using the formula e=c−b24a.
Step 1.2.4.1
Substitute the values of c, b and a into the formula e=c−b24a.
e=0−024(18)
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Simplify each term.
Step 1.2.4.2.1.1
Raising 0 to any positive power yields 0.
e=0−04(18)
Step 1.2.4.2.1.2
Combine 4 and 18.
e=0−048
Step 1.2.4.2.1.3
Cancel the common factor of 4 and 8.
Step 1.2.4.2.1.3.1
Factor 4 out of 4.
e=0−04(1)8
Step 1.2.4.2.1.3.2
Cancel the common factors.
Step 1.2.4.2.1.3.2.1
Factor 4 out of 8.
e=0−04⋅14⋅2
Step 1.2.4.2.1.3.2.2
Cancel the common factor.
e=0−04⋅14⋅2
Step 1.2.4.2.1.3.2.3
Rewrite the expression.
e=0−012
e=0−012
e=0−012
Step 1.2.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
e=0−(0⋅2)
Step 1.2.4.2.1.5
Multiply −(0⋅2).
Step 1.2.4.2.1.5.1
Multiply 0 by 2.
e=0−0
Step 1.2.4.2.1.5.2
Multiply −1 by 0.
e=0+0
e=0+0
e=0+0
Step 1.2.4.2.2
Add 0 and 0.
e=0
e=0
e=0
Step 1.2.5
Substitute the values of a, d, and e into the vertex form 18x2.
18x2
18x2
Step 1.3
Set y equal to the new right side.
y=18x2
y=18x2
Step 2
Use the vertex form, y=a(x−h)2+k, to determine the values of a, h, and k.
a=18
h=0
k=0
Step 3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 4
Find the vertex (h,k).
(0,0)
Step 5
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 5.2
Substitute the value of a into the formula.
14⋅18
Step 5.3
Simplify.
Step 5.3.1
Combine 4 and 18.
148
Step 5.3.2
Cancel the common factor of 4 and 8.
Step 5.3.2.1
Factor 4 out of 4.
14(1)8
Step 5.3.2.2
Cancel the common factors.
Step 5.3.2.2.1
Factor 4 out of 8.
14⋅14⋅2
Step 5.3.2.2.2
Cancel the common factor.
14⋅14⋅2
Step 5.3.2.2.3
Rewrite the expression.
112
112
112
Step 5.3.3
Multiply the numerator by the reciprocal of the denominator.
1⋅2
Step 5.3.4
Multiply 2 by 1.
2
2
2
Step 6
Step 6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 6.2
Substitute the known values of h, p, and k into the formula and simplify.
(0,2)
(0,2)
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=0
Step 8