Trigonometry Examples

Find the Domain and Range f(x)=tan(x)
f(x)=tan(x)
Step 1
Set the argument in tan(x) equal to π2+πn to find where the expression is undefined.
x=π2+πn, for any integer n
Step 2
The domain is all values of x that make the expression defined.
Set-Builder Notation:
{x|xπ2+πn}, for any integer n
Step 3
The range is the set of all valid y values. Use the graph to find the range.
Interval Notation:
(-,)
Set-Builder Notation:
{y|y}
Step 4
Determine the domain and range.
Domain: {x|xπ2+πn}, for any integer n
Range: (-,),{y|y}
Step 5
image of graph
f(x)=tanx
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]