Trigonometry Examples

Eliminate the Parameter x=t^2+3 , y=4t
x=t2+3x=t2+3 , y=4ty=4t
Step 1
Set up the parametric equation for x(t)x(t) to solve the equation for tt.
x=t2+3x=t2+3
Step 2
Rewrite the equation as t2+3=xt2+3=x.
t2+3=xt2+3=x
Step 3
Subtract 33 from both sides of the equation.
t2=x-3t2=x3
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
t=±x-3t=±x3
Step 5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.1
First, use the positive value of the ±± to find the first solution.
t=x-3t=x3
Step 5.2
Next, use the negative value of the ±± to find the second solution.
t=-x-3t=x3
Step 5.3
The complete solution is the result of both the positive and negative portions of the solution.
t=x-3t=x3
t=-x-3t=x3
t=x-3t=x3
t=-x-3t=x3
Step 6
Replace tt in the equation for yy to get the equation in terms of xx.
y=4(x-3,-x-3)y=4(x3,x3)
Step 7
Simplify 4(x-3,-x-3)4(x3,x3).
Tap for more steps...
Step 7.1
Multiply 44 by each element of the matrix.
y=(4x-3,4(-x-3))y=(4x3,4(x3))
Step 7.2
Multiply -11 by 44.
y=(4x-3,-4x-3)y=(4x3,4x3)
y=(4x-3,-4x-3)y=(4x3,4x3)
 [x2  12  π  xdx ]  x2  12  π  xdx