Trigonometry Examples

Solve the Triangle tri{8}{}{10}{}{6}{}
SideAngleb=8c=10a=6A=B=C=SideAngleb=8c=10a=6A=B=C=
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)a2=b2+c22bccos(A)
Step 2
Solve the equation.
A=arccos(b2+c2-a22bc)A=arccos(b2+c2a22bc)
Step 3
Substitute the known values into the equation.
A=arccos((8)2+(10)2-(6)22(8)(10))A=arccos((8)2+(10)2(6)22(8)(10))
Step 4
Simplify the results.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 88 to the power of 22.
A=arccos(64+102-622(8)10)A=arccos(64+102622(8)10)
Step 4.1.2
Raise 1010 to the power of 22.
A=arccos(64+100-622(8)10)A=arccos(64+100622(8)10)
Step 4.1.3
Raise 66 to the power of 22.
A=arccos(64+100-1362(8)10)A=arccos(64+1001362(8)10)
Step 4.1.4
Multiply -11 by 3636.
A=arccos(64+100-362(8)10)A=arccos(64+100362(8)10)
Step 4.1.5
Add 6464 and 100100.
A=arccos(164-362(8)10)A=arccos(164362(8)10)
Step 4.1.6
Subtract 3636 from 164164.
A=arccos(1282(8)10)A=arccos(1282(8)10)
A=arccos(1282(8)10)A=arccos(1282(8)10)
Step 4.2
Simplify the denominator.
Tap for more steps...
Step 4.2.1
Multiply 22 by 88.
A=arccos(1281610)A=arccos(1281610)
Step 4.2.2
Multiply 1616 by 1010.
A=arccos(128160)A=arccos(128160)
A=arccos(128160)A=arccos(128160)
Step 4.3
Cancel the common factor of 128128 and 160160.
Tap for more steps...
Step 4.3.1
Factor 3232 out of 128128.
A=arccos(32(4)160)A=arccos(32(4)160)
Step 4.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.1
Factor 3232 out of 160160.
A=arccos(324325)A=arccos(324325)
Step 4.3.2.2
Cancel the common factor.
A=arccos(324325)
Step 4.3.2.3
Rewrite the expression.
A=arccos(45)
A=arccos(45)
A=arccos(45)
Step 4.4
Evaluate arccos(45).
A=36.86989764
A=36.86989764
Step 5
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
b2=a2+c2-2accos(B)
Step 6
Solve the equation.
B=arccos(a2+c2-b22ac)
Step 7
Substitute the known values into the equation.
B=arccos((6)2+(10)2-(8)22(6)(10))
Step 8
Simplify the results.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Raise 6 to the power of 2.
B=arccos(36+102-822(6)10)
Step 8.1.2
Raise 10 to the power of 2.
B=arccos(36+100-822(6)10)
Step 8.1.3
Raise 8 to the power of 2.
B=arccos(36+100-1642(6)10)
Step 8.1.4
Multiply -1 by 64.
B=arccos(36+100-642(6)10)
Step 8.1.5
Add 36 and 100.
B=arccos(136-642(6)10)
Step 8.1.6
Subtract 64 from 136.
B=arccos(722(6)10)
B=arccos(722(6)10)
Step 8.2
Simplify the denominator.
Tap for more steps...
Step 8.2.1
Multiply 2 by 6.
B=arccos(721210)
Step 8.2.2
Multiply 12 by 10.
B=arccos(72120)
B=arccos(72120)
Step 8.3
Cancel the common factor of 72 and 120.
Tap for more steps...
Step 8.3.1
Factor 24 out of 72.
B=arccos(24(3)120)
Step 8.3.2
Cancel the common factors.
Tap for more steps...
Step 8.3.2.1
Factor 24 out of 120.
B=arccos(243245)
Step 8.3.2.2
Cancel the common factor.
B=arccos(243245)
Step 8.3.2.3
Rewrite the expression.
B=arccos(35)
B=arccos(35)
B=arccos(35)
Step 8.4
Evaluate arccos(35).
B=53.13010235
B=53.13010235
Step 9
The sum of all the angles in a triangle is 180 degrees.
36.86989764+C+53.13010235=180
Step 10
Solve the equation for C.
Tap for more steps...
Step 10.1
Add 36.86989764 and 53.13010235.
C+90=180
Step 10.2
Move all terms not containing C to the right side of the equation.
Tap for more steps...
Step 10.2.1
Subtract 90 from both sides of the equation.
C=180-90
Step 10.2.2
Subtract 90 from 180.
C=90
C=90
C=90
Step 11
These are the results for all angles and sides for the given triangle.
A=36.86989764
B=53.13010235
C=90
a=6
b=8
c=10
 [x2  12  π  xdx ]