Trigonometry Examples

Evaluate v((5+(5 square root of 2)/2)^2+(-(9 square root of 2)/2-3)^2)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply by .
Step 1.3.1.2
Multiply .
Tap for more steps...
Step 1.3.1.2.1
Combine and .
Step 1.3.1.2.2
Multiply by .
Step 1.3.1.3
Multiply .
Tap for more steps...
Step 1.3.1.3.1
Combine and .
Step 1.3.1.3.2
Multiply by .
Step 1.3.1.4
Multiply .
Tap for more steps...
Step 1.3.1.4.1
Multiply by .
Step 1.3.1.4.2
Multiply by .
Step 1.3.1.4.3
Raise to the power of .
Step 1.3.1.4.4
Raise to the power of .
Step 1.3.1.4.5
Use the power rule to combine exponents.
Step 1.3.1.4.6
Add and .
Step 1.3.1.4.7
Multiply by .
Step 1.3.1.5
Rewrite as .
Tap for more steps...
Step 1.3.1.5.1
Use to rewrite as .
Step 1.3.1.5.2
Apply the power rule and multiply exponents, .
Step 1.3.1.5.3
Combine and .
Step 1.3.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 1.3.1.5.4.1
Cancel the common factor.
Step 1.3.1.5.4.2
Rewrite the expression.
Step 1.3.1.5.5
Evaluate the exponent.
Step 1.3.1.6
Multiply by .
Step 1.3.1.7
Cancel the common factor of and .
Tap for more steps...
Step 1.3.1.7.1
Factor out of .
Step 1.3.1.7.2
Cancel the common factors.
Tap for more steps...
Step 1.3.1.7.2.1
Factor out of .
Step 1.3.1.7.2.2
Cancel the common factor.
Step 1.3.1.7.2.3
Rewrite the expression.
Step 1.3.2
To write as a fraction with a common denominator, multiply by .
Step 1.3.3
Combine and .
Step 1.3.4
Combine the numerators over the common denominator.
Step 1.3.5
Simplify the numerator.
Tap for more steps...
Step 1.3.5.1
Multiply by .
Step 1.3.5.2
Add and .
Step 1.3.6
Combine the numerators over the common denominator.
Step 1.4
Combine the numerators over the common denominator.
Step 1.5
Add and .
Step 1.6
Rewrite as .
Step 1.7
Expand using the FOIL Method.
Tap for more steps...
Step 1.7.1
Apply the distributive property.
Step 1.7.2
Apply the distributive property.
Step 1.7.3
Apply the distributive property.
Step 1.8
Simplify and combine like terms.
Tap for more steps...
Step 1.8.1
Simplify each term.
Tap for more steps...
Step 1.8.1.1
Multiply .
Tap for more steps...
Step 1.8.1.1.1
Multiply by .
Step 1.8.1.1.2
Multiply by .
Step 1.8.1.1.3
Multiply by .
Step 1.8.1.1.4
Multiply by .
Step 1.8.1.1.5
Raise to the power of .
Step 1.8.1.1.6
Raise to the power of .
Step 1.8.1.1.7
Use the power rule to combine exponents.
Step 1.8.1.1.8
Add and .
Step 1.8.1.1.9
Multiply by .
Step 1.8.1.2
Rewrite as .
Tap for more steps...
Step 1.8.1.2.1
Use to rewrite as .
Step 1.8.1.2.2
Apply the power rule and multiply exponents, .
Step 1.8.1.2.3
Combine and .
Step 1.8.1.2.4
Cancel the common factor of .
Tap for more steps...
Step 1.8.1.2.4.1
Cancel the common factor.
Step 1.8.1.2.4.2
Rewrite the expression.
Step 1.8.1.2.5
Evaluate the exponent.
Step 1.8.1.3
Multiply by .
Step 1.8.1.4
Cancel the common factor of and .
Tap for more steps...
Step 1.8.1.4.1
Factor out of .
Step 1.8.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.8.1.4.2.1
Factor out of .
Step 1.8.1.4.2.2
Cancel the common factor.
Step 1.8.1.4.2.3
Rewrite the expression.
Step 1.8.1.5
Multiply .
Tap for more steps...
Step 1.8.1.5.1
Multiply by .
Step 1.8.1.5.2
Combine and .
Step 1.8.1.5.3
Multiply by .
Step 1.8.1.6
Multiply .
Tap for more steps...
Step 1.8.1.6.1
Multiply by .
Step 1.8.1.6.2
Combine and .
Step 1.8.1.6.3
Multiply by .
Step 1.8.1.7
Multiply by .
Step 1.8.2
To write as a fraction with a common denominator, multiply by .
Step 1.8.3
Combine and .
Step 1.8.4
Combine the numerators over the common denominator.
Step 1.8.5
Simplify the numerator.
Tap for more steps...
Step 1.8.5.1
Multiply by .
Step 1.8.5.2
Add and .
Step 1.8.6
Combine the numerators over the common denominator.
Step 1.9
Combine the numerators over the common denominator.
Step 1.10
Add and .
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Combine the numerators over the common denominator.
Step 2.2
Add and .
Step 2.3
Add and .
Step 2.4
Cancel the common factor of and .
Tap for more steps...
Step 2.4.1
Factor out of .
Step 2.4.2
Factor out of .
Step 2.4.3
Factor out of .
Step 2.4.4
Cancel the common factors.
Tap for more steps...
Step 2.4.4.1
Factor out of .
Step 2.4.4.2
Cancel the common factor.
Step 2.4.4.3
Rewrite the expression.
Step 2.4.4.4
Divide by .
Step 2.5
Apply the distributive property.
Step 2.6
Move to the left of .
Step 3
Move to the left of .