Trigonometry Examples

Evaluate square root of ( square root of 113-7)/(( square root of 113)/2)
113-71132
Step 1
Multiply the numerator by the reciprocal of the denominator.
(113-7)2113
Step 2
Multiply 2113 by 113113.
(113-7)(2113113113)
Step 3
Combine and simplify the denominator.
Tap for more steps...
Step 3.1
Multiply 2113 by 113113.
(113-7)2113113113
Step 3.2
Raise 113 to the power of 1.
(113-7)21131131113
Step 3.3
Raise 113 to the power of 1.
(113-7)211311311131
Step 3.4
Use the power rule aman=am+n to combine exponents.
(113-7)21131131+1
Step 3.5
Add 1 and 1.
(113-7)21131132
Step 3.6
Rewrite 1132 as 113.
Tap for more steps...
Step 3.6.1
Use axn=axn to rewrite 113 as 11312.
(113-7)2113(11312)2
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
(113-7)2113113122
Step 3.6.3
Combine 12 and 2.
(113-7)211311322
Step 3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.6.4.1
Cancel the common factor.
(113-7)211311322
Step 3.6.4.2
Rewrite the expression.
(113-7)21131131
(113-7)21131131
Step 3.6.5
Evaluate the exponent.
(113-7)2113113
(113-7)2113113
(113-7)2113113
Step 4
Apply the distributive property.
1132113113-72113113
Step 5
Multiply 1132113113.
Tap for more steps...
Step 5.1
Combine 113 and 2113113.
113(2113)113-72113113
Step 5.2
Raise 113 to the power of 1.
2(1131113)113-72113113
Step 5.3
Raise 113 to the power of 1.
2(11311131)113-72113113
Step 5.4
Use the power rule aman=am+n to combine exponents.
21131+1113-72113113
Step 5.5
Add 1 and 1.
21132113-72113113
21132113-72113113
Step 6
Multiply -72113113.
Tap for more steps...
Step 6.1
Combine -7 and 2113113.
21132113+-7(2113)113
Step 6.2
Multiply 2 by -7.
21132113+-14113113
21132113+-14113113
Step 7
Combine the numerators over the common denominator.
21132-14113113
Step 8
Simplify the numerator.
Tap for more steps...
Step 8.1
Rewrite 1132 as 113.
Tap for more steps...
Step 8.1.1
Use axn=axn to rewrite 113 as 11312.
2(11312)2-14113113
Step 8.1.2
Apply the power rule and multiply exponents, (am)n=amn.
2113122-14113113
Step 8.1.3
Combine 12 and 2.
211322-14113113
Step 8.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.1.4.1
Cancel the common factor.
211322-14113113
Step 8.1.4.2
Rewrite the expression.
21131-14113113
21131-14113113
Step 8.1.5
Evaluate the exponent.
2113-14113113
2113-14113113
Step 8.2
Multiply 2 by 113.
226-14113113
226-14113113
Step 9
Rewrite 226-14113113 as 226-14113113.
226-14113113
Step 10
Multiply 226-14113113 by 113113.
226-14113113113113
Step 11
Combine and simplify the denominator.
Tap for more steps...
Step 11.1
Multiply 226-14113113 by 113113.
226-14113113113113
Step 11.2
Raise 113 to the power of 1.
226-141131131131113
Step 11.3
Raise 113 to the power of 1.
226-1411311311311131
Step 11.4
Use the power rule aman=am+n to combine exponents.
226-141131131131+1
Step 11.5
Add 1 and 1.
226-141131131132
Step 11.6
Rewrite 1132 as 113.
Tap for more steps...
Step 11.6.1
Use axn=axn to rewrite 113 as 11312.
226-14113113(11312)2
Step 11.6.2
Apply the power rule and multiply exponents, (am)n=amn.
226-14113113113122
Step 11.6.3
Combine 12 and 2.
226-1411311311322
Step 11.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 11.6.4.1
Cancel the common factor.
226-1411311311322
Step 11.6.4.2
Rewrite the expression.
226-141131131131
226-141131131131
Step 11.6.5
Evaluate the exponent.
226-14113113113
226-14113113113
226-14113113113
Step 12
Combine using the product rule for radicals.
(226-14113)113113
Step 13
The result can be shown in multiple forms.
Exact Form:
(226-14113)113113
Decimal Form:
0.82643256
 [x2  12  π  xdx ]