Enter a problem...
Trigonometry Examples
√1-(1024)2
⎷1−(1024)2
Step 1
Step 1.1
Factor 22 out of 1010.
√1-2(5)242√1−2(5)242
Step 1.2
Cancel the common factors.
Step 1.2.1
Factor 22 out of 2424.
√1-2⋅52⋅122√1−2⋅52⋅122
Step 1.2.2
Cancel the common factor.
√1-2⋅52⋅122
Step 1.2.3
Rewrite the expression.
√1-5122
√1-5122
√1-5122
Step 2
Step 2.1
Write 1 as a fraction with a common denominator.
√1212-5122
Step 2.2
Combine the numerators over the common denominator.
√12-5122
Step 2.3
Subtract 5 from 12.
√7122
√7122
Step 3
Multiply the numerator by the reciprocal of the denominator.
√712⋅12
Step 4
Step 4.1
Multiply 712 by 12.
√712⋅2
Step 4.2
Multiply 12 by 2.
√724
√724
Step 5
Rewrite √724 as √7√24.
√7√24
Step 6
Step 6.1
Rewrite 24 as 22⋅6.
Step 6.1.1
Factor 4 out of 24.
√7√4(6)
Step 6.1.2
Rewrite 4 as 22.
√7√22⋅6
√7√22⋅6
Step 6.2
Pull terms out from under the radical.
√72√6
√72√6
Step 7
Multiply √72√6 by √6√6.
√72√6⋅√6√6
Step 8
Step 8.1
Multiply √72√6 by √6√6.
√7√62√6√6
Step 8.2
Move √6.
√7√62(√6√6)
Step 8.3
Raise √6 to the power of 1.
√7√62(√61√6)
Step 8.4
Raise √6 to the power of 1.
√7√62(√61√61)
Step 8.5
Use the power rule aman=am+n to combine exponents.
√7√62√61+1
Step 8.6
Add 1 and 1.
√7√62√62
Step 8.7
Rewrite √62 as 6.
Step 8.7.1
Use n√ax=axn to rewrite √6 as 612.
√7√62(612)2
Step 8.7.2
Apply the power rule and multiply exponents, (am)n=amn.
√7√62⋅612⋅2
Step 8.7.3
Combine 12 and 2.
√7√62⋅622
Step 8.7.4
Cancel the common factor of 2.
Step 8.7.4.1
Cancel the common factor.
√7√62⋅622
Step 8.7.4.2
Rewrite the expression.
√7√62⋅61
√7√62⋅61
Step 8.7.5
Evaluate the exponent.
√7√62⋅6
√7√62⋅6
√7√62⋅6
Step 9
Step 9.1
Combine using the product rule for radicals.
√7⋅62⋅6
Step 9.2
Multiply 7 by 6.
√422⋅6
√422⋅6
Step 10
Multiply 2 by 6.
√4212
Step 11
The result can be shown in multiple forms.
Exact Form:
√4212
Decimal Form:
0.54006172…