Trigonometry Examples

Evaluate square root of (1-(-6/5))/(1+-5/6)
1-(-65)1+-56  1(65)1+56
Step 1
Move the negative in front of the fraction.
1--651+-56 1651+56
Step 2
Multiply --6565.
Tap for more steps...
Step 2.1
Multiply -11 by -11.
1+1(65)1+-56  1+1(65)1+56
Step 2.2
Multiply 6565 by 11.
1+651+-56 1+651+56
1+651+-56 1+651+56
Step 3
Write 11 as a fraction with a common denominator.
55+651+-56 55+651+56
Step 4
Combine the numerators over the common denominator.
5+651+-56 5+651+56
Step 5
Add 55 and 66.
1151+-56 1151+56
Step 6
Write 11 as a fraction with a common denominator.
11566+-56 11566+56
Step 7
Combine the numerators over the common denominator.
1156-56 115656
Step 8
Subtract 55 from 66.
11516 11516
Step 9
Multiply the numerator by the reciprocal of the denominator.
11561156
Step 10
Multiply 11561156.
Tap for more steps...
Step 10.1
Combine 115115 and 66.
11651165
Step 10.2
Multiply 1111 by 66.
665665
665665
Step 11
Rewrite 665665 as 665665.
665665
Step 12
Multiply 665665 by 5555.
6655566555
Step 13
Combine and simplify the denominator.
Tap for more steps...
Step 13.1
Multiply 665665 by 5555.
6655566555
Step 13.2
Raise 55 to the power of 11.
665515665515
Step 13.3
Raise 55 to the power of 11.
66551516655151
Step 13.4
Use the power rule aman=am+naman=am+n to combine exponents.
66551+166551+1
Step 13.5
Add 11 and 11.
6655266552
Step 13.6
Rewrite 5252 as 55.
Tap for more steps...
Step 13.6.1
Use nax=axnnax=axn to rewrite 55 as 512512.
665(512)2665(512)2
Step 13.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
66551226655122
Step 13.6.3
Combine 1212 and 22.
665522665522
Step 13.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 13.6.4.1
Cancel the common factor.
665522
Step 13.6.4.2
Rewrite the expression.
66551
66551
Step 13.6.5
Evaluate the exponent.
6655
6655
6655
Step 14
Simplify the numerator.
Tap for more steps...
Step 14.1
Combine using the product rule for radicals.
6655
Step 14.2
Multiply 66 by 5.
3305
3305
Step 15
The result can be shown in multiple forms.
Exact Form:
3305
Decimal Form:
3.63318042
 [x2  12  π  xdx ]