Trigonometry Examples

Evaluate cos(8x)^2-sin(8x)^2=cos(B)
cos2(8x)-sin2(8x)=cos(B)
Step 1
Subtract cos(B) from both sides of the equation.
cos2(8x)-sin2(8x)-cos(B)=0
Step 2
Simplify cos2(8x)-sin2(8x)-cos(B).
Tap for more steps...
Step 2.1
Apply the cosine double-angle identity.
cos(2(8x))-cos(B)=0
Step 2.2
Multiply 8 by 2.
cos(16x)-cos(B)=0
cos(16x)-cos(B)=0
Step 3
Add cos(B) to both sides of the equation.
cos(16x)=cos(B)
Step 4
For the two functions to be equal, the arguments of each must be equal.
16x=B
Step 5
Divide each term in 16x=B by 16 and simplify.
Tap for more steps...
Step 5.1
Divide each term in 16x=B by 16.
16x16=B16
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of 16.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
16x16=B16
Step 5.2.1.2
Divide x by 1.
x=B16
x=B16
x=B16
x=B16
 [x2  12  π  xdx ]