Trigonometry Examples

Evaluate v((1+( square root of 2)/2)/(1-( square root of 2)/2))
v(1+221-22)
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Write 1 as a fraction with a common denominator.
v22+221-22
Step 1.2
Combine the numerators over the common denominator.
v2+221-22
v2+221-22
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Write 1 as a fraction with a common denominator.
v2+2222-22
Step 2.2
Combine the numerators over the common denominator.
v2+222-22
v2+222-22
Step 3
Multiply the numerator by the reciprocal of the denominator.
v(2+2222-2)
Step 4
Cancel the common factor of 2.
Tap for more steps...
Step 4.1
Cancel the common factor.
v(2+2222-2)
Step 4.2
Rewrite the expression.
v((2+2)12-2)
v((2+2)12-2)
Step 5
Multiply 12-2 by 2+22+2.
v((2+2)(12-22+22+2))
Step 6
Simplify terms.
Tap for more steps...
Step 6.1
Multiply 12-2 by 2+22+2.
v((2+2)2+2(2-2)(2+2))
Step 6.2
Expand the denominator using the FOIL method.
v((2+2)2+24+22-22-22)
Step 6.3
Simplify.
v((2+2)2+22)
Step 6.4
Apply the distributive property.
v(22+22+22+22)
Step 6.5
Cancel the common factor of 2.
Tap for more steps...
Step 6.5.1
Cancel the common factor.
v(22+22+22+22)
Step 6.5.2
Rewrite the expression.
v(2+2+22+22)
v(2+2+22+22)
Step 6.6
Combine 2 and 2+22.
v(2+2+2(2+2)2)
v(2+2+2(2+2)2)
Step 7
Simplify each term.
Tap for more steps...
Step 7.1
Apply the distributive property.
v(2+2+22+222)
Step 7.2
Move 2 to the left of 2.
v(2+2+22+222)
Step 7.3
Combine using the product rule for radicals.
v(2+2+22+222)
Step 7.4
Simplify each term.
Tap for more steps...
Step 7.4.1
Multiply 2 by 2.
v(2+2+22+42)
Step 7.4.2
Rewrite 4 as 22.
v(2+2+22+222)
Step 7.4.3
Pull terms out from under the radical, assuming positive real numbers.
v(2+2+22+22)
v(2+2+22+22)
Step 7.5
Cancel the common factor of 22+2 and 2.
Tap for more steps...
Step 7.5.1
Factor 2 out of 22.
v(2+2+2(2)+22)
Step 7.5.2
Factor 2 out of 2.
v(2+2+2(2)+212)
Step 7.5.3
Factor 2 out of 2(2)+2(1).
v(2+2+2(2+1)2)
Step 7.5.4
Cancel the common factors.
Tap for more steps...
Step 7.5.4.1
Factor 2 out of 2.
v(2+2+2(2+1)2(1))
Step 7.5.4.2
Cancel the common factor.
v(2+2+2(2+1)21)
Step 7.5.4.3
Rewrite the expression.
v(2+2+2+11)
Step 7.5.4.4
Divide 2+1 by 1.
v(2+2+2+1)
v(2+2+2+1)
v(2+2+2+1)
v(2+2+2+1)
Step 8
Simplify terms.
Tap for more steps...
Step 8.1
Add 2 and 1.
v(3+2+2)
Step 8.2
Add 2 and 2.
v(3+22)
Step 8.3
Apply the distributive property.
v3+v(22)
Step 8.4
Move 3 to the left of v.
3v+v(22)
3v+v(22)
Step 9
Move 2 to the left of v.
3v+2v2
 [x2  12  π  xdx ]