Enter a problem...
Trigonometry Examples
v(1+√221-√22)
Step 1
Step 1.1
Write 1 as a fraction with a common denominator.
v22+√221-√22
Step 1.2
Combine the numerators over the common denominator.
v2+√221-√22
v2+√221-√22
Step 2
Step 2.1
Write 1 as a fraction with a common denominator.
v2+√2222-√22
Step 2.2
Combine the numerators over the common denominator.
v2+√222-√22
v2+√222-√22
Step 3
Multiply the numerator by the reciprocal of the denominator.
v(2+√22⋅22-√2)
Step 4
Step 4.1
Cancel the common factor.
v(2+√22⋅22-√2)
Step 4.2
Rewrite the expression.
v((2+√2)12-√2)
v((2+√2)12-√2)
Step 5
Multiply 12-√2 by 2+√22+√2.
v((2+√2)(12-√2⋅2+√22+√2))
Step 6
Step 6.1
Multiply 12-√2 by 2+√22+√2.
v((2+√2)2+√2(2-√2)(2+√2))
Step 6.2
Expand the denominator using the FOIL method.
v((2+√2)2+√24+2√2-2√2-√22)
Step 6.3
Simplify.
v((2+√2)2+√22)
Step 6.4
Apply the distributive property.
v(22+√22+√22+√22)
Step 6.5
Cancel the common factor of 2.
Step 6.5.1
Cancel the common factor.
v(22+√22+√22+√22)
Step 6.5.2
Rewrite the expression.
v(2+√2+√22+√22)
v(2+√2+√22+√22)
Step 6.6
Combine √2 and 2+√22.
v(2+√2+√2(2+√2)2)
v(2+√2+√2(2+√2)2)
Step 7
Step 7.1
Apply the distributive property.
v(2+√2+√2⋅2+√2√22)
Step 7.2
Move 2 to the left of √2.
v(2+√2+2⋅√2+√2√22)
Step 7.3
Combine using the product rule for radicals.
v(2+√2+2⋅√2+√2⋅22)
Step 7.4
Simplify each term.
Step 7.4.1
Multiply 2 by 2.
v(2+√2+2√2+√42)
Step 7.4.2
Rewrite 4 as 22.
v(2+√2+2√2+√222)
Step 7.4.3
Pull terms out from under the radical, assuming positive real numbers.
v(2+√2+2√2+22)
v(2+√2+2√2+22)
Step 7.5
Cancel the common factor of 2√2+2 and 2.
Step 7.5.1
Factor 2 out of 2√2.
v(2+√2+2(√2)+22)
Step 7.5.2
Factor 2 out of 2.
v(2+√2+2(√2)+2⋅12)
Step 7.5.3
Factor 2 out of 2(√2)+2(1).
v(2+√2+2(√2+1)2)
Step 7.5.4
Cancel the common factors.
Step 7.5.4.1
Factor 2 out of 2.
v(2+√2+2(√2+1)2(1))
Step 7.5.4.2
Cancel the common factor.
v(2+√2+2(√2+1)2⋅1)
Step 7.5.4.3
Rewrite the expression.
v(2+√2+√2+11)
Step 7.5.4.4
Divide √2+1 by 1.
v(2+√2+√2+1)
v(2+√2+√2+1)
v(2+√2+√2+1)
v(2+√2+√2+1)
Step 8
Step 8.1
Add 2 and 1.
v(3+√2+√2)
Step 8.2
Add √2 and √2.
v(3+2√2)
Step 8.3
Apply the distributive property.
v⋅3+v(2√2)
Step 8.4
Move 3 to the left of v.
3⋅v+v(2√2)
3⋅v+v(2√2)
Step 9
Move 2 to the left of v.
3v+2v√2