Enter a problem...
Trigonometry Examples
(-√25,√22)(−√25,√22)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (-√25,√22)(−√25,√22), draw the triangle between the three points (0,0)(0,0), (-√25,0)(−√25,0), and (-√25,√22)(−√25,√22).
Opposite : √22√22
Adjacent : -√25−√25
Step 2
Step 2.1
Move the negative in front of the fraction.
√(-√25)2+(√22)2
⎷(−√25)2+(√22)2
Step 2.2
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.2.1
Apply the product rule to -√25−√25.
√(-1)2(√25)2+(√22)2
⎷(−1)2(√25)2+(√22)2
Step 2.2.2
Apply the product rule to √25√25.
√(-1)2√2252+(√22)2
⎷(−1)2√2252+(√22)2
√(-1)2√2252+(√22)2
⎷(−1)2√2252+(√22)2
Step 2.3
Simplify the expression.
Step 2.3.1
Raise -1−1 to the power of 22.
√1√2252+(√22)2
⎷1√2252+(√22)2
Step 2.3.2
Multiply √2252√2252 by 11.
√√2252+(√22)2
⎷√2252+(√22)2
√√2252+(√22)2
⎷√2252+(√22)2
Step 2.4
Rewrite √22√22 as 2.
Step 2.4.1
Use n√ax=axn to rewrite √2 as 212.
√(212)252+(√22)2
Step 2.4.2
Apply the power rule and multiply exponents, (am)n=amn.
√212⋅252+(√22)2
Step 2.4.3
Combine 12 and 2.
√22252+(√22)2
Step 2.4.4
Cancel the common factor of 2.
Step 2.4.4.1
Cancel the common factor.
√22252+(√22)2
Step 2.4.4.2
Rewrite the expression.
√2152+(√22)2
√2152+(√22)2
Step 2.4.5
Evaluate the exponent.
√252+(√22)2
√252+(√22)2
Step 2.5
Simplify the expression.
Step 2.5.1
Raise 5 to the power of 2.
√225+(√22)2
Step 2.5.2
Apply the product rule to √22.
√225+√2222
√225+√2222
Step 2.6
Rewrite √22 as 2.
Step 2.6.1
Use n√ax=axn to rewrite √2 as 212.
√225+(212)222
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
√225+212⋅222
Step 2.6.3
Combine 12 and 2.
√225+22222
Step 2.6.4
Cancel the common factor of 2.
Step 2.6.4.1
Cancel the common factor.
√225+22222
Step 2.6.4.2
Rewrite the expression.
√225+2122
√225+2122
Step 2.6.5
Evaluate the exponent.
√225+222
√225+222
Step 2.7
Raise 2 to the power of 2.
√225+24
Step 2.8
Cancel the common factor of 2 and 4.
Step 2.8.1
Factor 2 out of 2.
√225+2(1)4
Step 2.8.2
Cancel the common factors.
Step 2.8.2.1
Factor 2 out of 4.
√225+2⋅12⋅2
Step 2.8.2.2
Cancel the common factor.
√225+2⋅12⋅2
Step 2.8.2.3
Rewrite the expression.
√225+12
√225+12
√225+12
Step 2.9
To write 225 as a fraction with a common denominator, multiply by 22.
√225⋅22+12
Step 2.10
To write 12 as a fraction with a common denominator, multiply by 2525.
√225⋅22+12⋅2525
Step 2.11
Write each expression with a common denominator of 50, by multiplying each by an appropriate factor of 1.
Step 2.11.1
Multiply 225 by 22.
√2⋅225⋅2+12⋅2525
Step 2.11.2
Multiply 25 by 2.
√2⋅250+12⋅2525
Step 2.11.3
Multiply 12 by 2525.
√2⋅250+252⋅25
Step 2.11.4
Multiply 2 by 25.
√2⋅250+2550
√2⋅250+2550
Step 2.12
Combine the numerators over the common denominator.
√2⋅2+2550
Step 2.13
Simplify the numerator.
Step 2.13.1
Multiply 2 by 2.
√4+2550
Step 2.13.2
Add 4 and 25.
√2950
√2950
Step 2.14
Rewrite √2950 as √29√50.
√29√50
Step 2.15
Simplify the denominator.
Step 2.15.1
Rewrite 50 as 52⋅2.
Step 2.15.1.1
Factor 25 out of 50.
√29√25(2)
Step 2.15.1.2
Rewrite 25 as 52.
√29√52⋅2
√29√52⋅2
Step 2.15.2
Pull terms out from under the radical.
√295√2
√295√2
Step 2.16
Multiply √295√2 by √2√2.
√295√2⋅√2√2
Step 2.17
Combine and simplify the denominator.
Step 2.17.1
Multiply √295√2 by √2√2.
√29√25√2√2
Step 2.17.2
Move √2.
√29√25(√2√2)
Step 2.17.3
Raise √2 to the power of 1.
√29√25(√21√2)
Step 2.17.4
Raise √2 to the power of 1.
√29√25(√21√21)
Step 2.17.5
Use the power rule aman=am+n to combine exponents.
√29√25√21+1
Step 2.17.6
Add 1 and 1.
√29√25√22
Step 2.17.7
Rewrite √22 as 2.
Step 2.17.7.1
Use n√ax=axn to rewrite √2 as 212.
√29√25(212)2
Step 2.17.7.2
Apply the power rule and multiply exponents, (am)n=amn.
√29√25⋅212⋅2
Step 2.17.7.3
Combine 12 and 2.
√29√25⋅222
Step 2.17.7.4
Cancel the common factor of 2.
Step 2.17.7.4.1
Cancel the common factor.
√29√25⋅222
Step 2.17.7.4.2
Rewrite the expression.
√29√25⋅21
√29√25⋅21
Step 2.17.7.5
Evaluate the exponent.
√29√25⋅2
√29√25⋅2
√29√25⋅2
Step 2.18
Simplify the numerator.
Step 2.18.1
Combine using the product rule for radicals.
√29⋅25⋅2
Step 2.18.2
Multiply 29 by 2.
√585⋅2
√585⋅2
Step 2.19
Multiply 5 by 2.
√5810
√5810
Step 3
cos(θ)=AdjacentHypotenuse therefore cos(θ)=-√25√5810.
-√25√5810
Step 4
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
cos(θ)=-√25⋅10√58
Step 4.2
Cancel the common factor of 5.
Step 4.2.1
Factor 5 out of 10.
cos(θ)=-√25⋅5(2)√58
Step 4.2.2
Cancel the common factor.
cos(θ)=-√25⋅5⋅2√58
Step 4.2.3
Rewrite the expression.
cos(θ)=-√22√58
cos(θ)=-√22√58
Step 4.3
Combine 2√58 and √2.
cos(θ)=-2√2√58
Step 4.4
Combine √2 and √58 into a single radical.
cos(θ)=-(2√258)
Step 4.5
Cancel the common factor of 2 and 58.
Step 4.5.1
Factor 2 out of 2.
cos(θ)=-(2√2(1)58)
Step 4.5.2
Cancel the common factors.
Step 4.5.2.1
Factor 2 out of 58.
cos(θ)=-(2√2⋅12⋅29)
Step 4.5.2.2
Cancel the common factor.
cos(θ)=-(2√2⋅12⋅29)
Step 4.5.2.3
Rewrite the expression.
cos(θ)=-(2√129)
cos(θ)=-(2√129)
cos(θ)=-(2√129)
Step 4.6
Rewrite √129 as √1√29.
cos(θ)=-(2(√1√29))
Step 4.7
Any root of 1 is 1.
cos(θ)=-(2(1√29))
Step 4.8
Multiply 1√29 by √29√29.
cos(θ)=-(2(1√29⋅√29√29))
Step 4.9
Combine and simplify the denominator.
Step 4.9.1
Multiply 1√29 by √29√29.
cos(θ)=-(2(√29√29√29))
Step 4.9.2
Raise √29 to the power of 1.
cos(θ)=-(2(√29√29√29))
Step 4.9.3
Raise √29 to the power of 1.
cos(θ)=-(2(√29√29√29))
Step 4.9.4
Use the power rule aman=am+n to combine exponents.
cos(θ)=-(2(√29√291+1))
Step 4.9.5
Add 1 and 1.
cos(θ)=-(2(√29√292))
Step 4.9.6
Rewrite √292 as 29.
Step 4.9.6.1
Use n√ax=axn to rewrite √29 as 2912.
cos(θ)=-(2(√29(2912)2))
Step 4.9.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cos(θ)=-(2(√292912⋅2))
Step 4.9.6.3
Combine 12 and 2.
cos(θ)=-(2(√292922))
Step 4.9.6.4
Cancel the common factor of 2.
Step 4.9.6.4.1
Cancel the common factor.
cos(θ)=-(2(√292922))
Step 4.9.6.4.2
Rewrite the expression.
cos(θ)=-(2(√2929))
cos(θ)=-(2(√2929))
Step 4.9.6.5
Evaluate the exponent.
cos(θ)=-(2(√2929))
cos(θ)=-(2(√2929))
cos(θ)=-(2(√2929))
Step 4.10
Combine 2 and √2929.
cos(θ)=-2√2929
cos(θ)=-2√2929
Step 5
Approximate the result.
cos(θ)=-2√2929≈-0.37139067