Enter a problem...
Trigonometry Examples
(56,√116)
Step 1
To find the sin(θ) between the x-axis and the line between the points (0,0) and (56,√116), draw the triangle between the three points (0,0), (56,0), and (56,√116).
Opposite : √116
Adjacent : 56
Step 2
Step 2.1
Apply the product rule to 56.
√5262+(√116)2
Step 2.2
Raise 5 to the power of 2.
√2562+(√116)2
Step 2.3
Raise 6 to the power of 2.
√2536+(√116)2
Step 2.4
Rewrite √116 as √11√6.
√2536+(√11√6)2
Step 2.5
Multiply √11√6 by √6√6.
√2536+(√11√6⋅√6√6)2
Step 2.6
Combine and simplify the denominator.
Step 2.6.1
Multiply √11√6 by √6√6.
√2536+(√11√6√6√6)2
Step 2.6.2
Raise √6 to the power of 1.
√2536+(√11√6√61√6)2
Step 2.6.3
Raise √6 to the power of 1.
√2536+(√11√6√61√61)2
Step 2.6.4
Use the power rule aman=am+n to combine exponents.
√2536+(√11√6√61+1)2
Step 2.6.5
Add 1 and 1.
√2536+(√11√6√62)2
Step 2.6.6
Rewrite √62 as 6.
Step 2.6.6.1
Use n√ax=axn to rewrite √6 as 612.
√2536+(√11√6(612)2)2
Step 2.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
√2536+(√11√6612⋅2)2
Step 2.6.6.3
Combine 12 and 2.
√2536+(√11√6622)2
Step 2.6.6.4
Cancel the common factor of 2.
Step 2.6.6.4.1
Cancel the common factor.
√2536+(√11√6622)2
Step 2.6.6.4.2
Rewrite the expression.
√2536+(√11√661)2
√2536+(√11√661)2
Step 2.6.6.5
Evaluate the exponent.
√2536+(√11√66)2
√2536+(√11√66)2
√2536+(√11√66)2
Step 2.7
Simplify the numerator.
Step 2.7.1
Combine using the product rule for radicals.
√2536+(√11⋅66)2
Step 2.7.2
Multiply 11 by 6.
√2536+(√666)2
√2536+(√666)2
Step 2.8
Simplify terms.
Step 2.8.1
Apply the product rule to √666.
√2536+√66262
Step 2.8.2
Rewrite √662 as 66.
Step 2.8.2.1
Use n√ax=axn to rewrite √66 as 6612.
√2536+(6612)262
Step 2.8.2.2
Apply the power rule and multiply exponents, (am)n=amn.
√2536+6612⋅262
Step 2.8.2.3
Combine 12 and 2.
√2536+662262
Step 2.8.2.4
Cancel the common factor of 2.
Step 2.8.2.4.1
Cancel the common factor.
√2536+662262
Step 2.8.2.4.2
Rewrite the expression.
√2536+66162
√2536+66162
Step 2.8.2.5
Evaluate the exponent.
√2536+6662
√2536+6662
Step 2.8.3
Raise 6 to the power of 2.
√2536+6636
Step 2.8.4
Cancel the common factor of 66 and 36.
Step 2.8.4.1
Factor 6 out of 66.
√2536+6(11)36
Step 2.8.4.2
Cancel the common factors.
Step 2.8.4.2.1
Factor 6 out of 36.
√2536+6⋅116⋅6
Step 2.8.4.2.2
Cancel the common factor.
√2536+6⋅116⋅6
Step 2.8.4.2.3
Rewrite the expression.
√2536+116
√2536+116
√2536+116
√2536+116
Step 2.9
To write 116 as a fraction with a common denominator, multiply by 66.
√2536+116⋅66
Step 2.10
Write each expression with a common denominator of 36, by multiplying each by an appropriate factor of 1.
Step 2.10.1
Multiply 116 by 66.
√2536+11⋅66⋅6
Step 2.10.2
Multiply 6 by 6.
√2536+11⋅636
√2536+11⋅636
Step 2.11
Combine the numerators over the common denominator.
√25+11⋅636
Step 2.12
Simplify the numerator.
Step 2.12.1
Multiply 11 by 6.
√25+6636
Step 2.12.2
Add 25 and 66.
√9136
√9136
Step 2.13
Rewrite √9136 as √91√36.
√91√36
Step 2.14
Simplify the denominator.
Step 2.14.1
Rewrite 36 as 62.
√91√62
Step 2.14.2
Pull terms out from under the radical, assuming positive real numbers.
√916
√916
√916
Step 3
sin(θ)=OppositeHypotenuse therefore sin(θ)=√116√916.
√116√916
Step 4
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
sin(θ)=√116(6√91)
Step 4.2
Rewrite √116 as √11√6.
sin(θ)=√11√6⋅6√91
Step 4.3
Multiply √11√6 by √6√6.
sin(θ)=√11√6⋅√6√6⋅6√91
Step 4.4
Combine and simplify the denominator.
Step 4.4.1
Multiply √11√6 by √6√6.
sin(θ)=√11√6√6√6⋅6√91
Step 4.4.2
Raise √6 to the power of 1.
sin(θ)=√11√6√6√6⋅6√91
Step 4.4.3
Raise √6 to the power of 1.
sin(θ)=√11√6√6√6⋅6√91
Step 4.4.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=√11√6√61+1⋅6√91
Step 4.4.5
Add 1 and 1.
sin(θ)=√11√6√62⋅6√91
Step 4.4.6
Rewrite √62 as 6.
Step 4.4.6.1
Use n√ax=axn to rewrite √6 as 612.
sin(θ)=√11√6(612)2⋅6√91
Step 4.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=√11√6612⋅2⋅6√91
Step 4.4.6.3
Combine 12 and 2.
sin(θ)=√11√6622⋅6√91
Step 4.4.6.4
Cancel the common factor of 2.
Step 4.4.6.4.1
Cancel the common factor.
sin(θ)=√11√6622⋅6√91
Step 4.4.6.4.2
Rewrite the expression.
sin(θ)=√11√66⋅6√91
sin(θ)=√11√66⋅6√91
Step 4.4.6.5
Evaluate the exponent.
sin(θ)=√11√66⋅6√91
sin(θ)=√11√66⋅6√91
sin(θ)=√11√66⋅6√91
Step 4.5
Cancel the common factor of 6.
Step 4.5.1
Cancel the common factor.
sin(θ)=√11√66⋅6√91
Step 4.5.2
Rewrite the expression.
sin(θ)=√11√6(1√91)
sin(θ)=√11√6(1√91)
Step 4.6
Combine using the product rule for radicals.
sin(θ)=√11⋅6(1√91)
Step 4.7
Multiply 11 by 6.
sin(θ)=√66(1√91)
Step 4.8
Combine √66 and 1√91.
sin(θ)=√66√91
Step 4.9
Multiply √66√91 by √91√91.
sin(θ)=√66√91⋅√91√91
Step 4.10
Combine and simplify the denominator.
Step 4.10.1
Multiply √66√91 by √91√91.
sin(θ)=√66√91√91√91
Step 4.10.2
Raise √91 to the power of 1.
sin(θ)=√66√91√91√91
Step 4.10.3
Raise √91 to the power of 1.
sin(θ)=√66√91√91√91
Step 4.10.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=√66√91√911+1
Step 4.10.5
Add 1 and 1.
sin(θ)=√66√91√912
Step 4.10.6
Rewrite √912 as 91.
Step 4.10.6.1
Use n√ax=axn to rewrite √91 as 9112.
sin(θ)=√66√91(9112)2
Step 4.10.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=√66√919112⋅2
Step 4.10.6.3
Combine 12 and 2.
sin(θ)=√66√919122
Step 4.10.6.4
Cancel the common factor of 2.
Step 4.10.6.4.1
Cancel the common factor.
sin(θ)=√66√919122
Step 4.10.6.4.2
Rewrite the expression.
sin(θ)=√66√9191
sin(θ)=√66√9191
Step 4.10.6.5
Evaluate the exponent.
sin(θ)=√66√9191
sin(θ)=√66√9191
sin(θ)=√66√9191
Step 4.11
Simplify the numerator.
Step 4.11.1
Combine using the product rule for radicals.
sin(θ)=√66⋅9191
Step 4.11.2
Multiply 66 by 91.
sin(θ)=√600691
sin(θ)=√600691
sin(θ)=√600691
Step 5
Approximate the result.
sin(θ)=√600691≈0.85163062