Trigonometry Examples

Find the Sine Given the Point (5/6, square root of 11/6)
(56,116)
Step 1
To find the sin(θ) between the x-axis and the line between the points (0,0) and (56,116), draw the triangle between the three points (0,0), (56,0), and (56,116).
Opposite : 116
Adjacent : 56
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2.
Tap for more steps...
Step 2.1
Apply the product rule to 56.
5262+(116)2
Step 2.2
Raise 5 to the power of 2.
2562+(116)2
Step 2.3
Raise 6 to the power of 2.
2536+(116)2
Step 2.4
Rewrite 116 as 116.
2536+(116)2
Step 2.5
Multiply 116 by 66.
2536+(11666)2
Step 2.6
Combine and simplify the denominator.
Tap for more steps...
Step 2.6.1
Multiply 116 by 66.
2536+(11666)2
Step 2.6.2
Raise 6 to the power of 1.
2536+(116616)2
Step 2.6.3
Raise 6 to the power of 1.
2536+(1166161)2
Step 2.6.4
Use the power rule aman=am+n to combine exponents.
2536+(11661+1)2
Step 2.6.5
Add 1 and 1.
2536+(11662)2
Step 2.6.6
Rewrite 62 as 6.
Tap for more steps...
Step 2.6.6.1
Use nax=axn to rewrite 6 as 612.
2536+(116(612)2)2
Step 2.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
2536+(1166122)2
Step 2.6.6.3
Combine 12 and 2.
2536+(116622)2
Step 2.6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.6.4.1
Cancel the common factor.
2536+(116622)2
Step 2.6.6.4.2
Rewrite the expression.
2536+(11661)2
2536+(11661)2
Step 2.6.6.5
Evaluate the exponent.
2536+(1166)2
2536+(1166)2
2536+(1166)2
Step 2.7
Simplify the numerator.
Tap for more steps...
Step 2.7.1
Combine using the product rule for radicals.
2536+(1166)2
Step 2.7.2
Multiply 11 by 6.
2536+(666)2
2536+(666)2
Step 2.8
Simplify terms.
Tap for more steps...
Step 2.8.1
Apply the product rule to 666.
2536+66262
Step 2.8.2
Rewrite 662 as 66.
Tap for more steps...
Step 2.8.2.1
Use nax=axn to rewrite 66 as 6612.
2536+(6612)262
Step 2.8.2.2
Apply the power rule and multiply exponents, (am)n=amn.
2536+6612262
Step 2.8.2.3
Combine 12 and 2.
2536+662262
Step 2.8.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.8.2.4.1
Cancel the common factor.
2536+662262
Step 2.8.2.4.2
Rewrite the expression.
2536+66162
2536+66162
Step 2.8.2.5
Evaluate the exponent.
2536+6662
2536+6662
Step 2.8.3
Raise 6 to the power of 2.
2536+6636
Step 2.8.4
Cancel the common factor of 66 and 36.
Tap for more steps...
Step 2.8.4.1
Factor 6 out of 66.
2536+6(11)36
Step 2.8.4.2
Cancel the common factors.
Tap for more steps...
Step 2.8.4.2.1
Factor 6 out of 36.
2536+61166
Step 2.8.4.2.2
Cancel the common factor.
2536+61166
Step 2.8.4.2.3
Rewrite the expression.
2536+116
2536+116
2536+116
2536+116
Step 2.9
To write 116 as a fraction with a common denominator, multiply by 66.
2536+11666
Step 2.10
Write each expression with a common denominator of 36, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.10.1
Multiply 116 by 66.
2536+11666
Step 2.10.2
Multiply 6 by 6.
2536+11636
2536+11636
Step 2.11
Combine the numerators over the common denominator.
25+11636
Step 2.12
Simplify the numerator.
Tap for more steps...
Step 2.12.1
Multiply 11 by 6.
25+6636
Step 2.12.2
Add 25 and 66.
9136
9136
Step 2.13
Rewrite 9136 as 9136.
9136
Step 2.14
Simplify the denominator.
Tap for more steps...
Step 2.14.1
Rewrite 36 as 62.
9162
Step 2.14.2
Pull terms out from under the radical, assuming positive real numbers.
916
916
916
Step 3
sin(θ)=OppositeHypotenuse therefore sin(θ)=116916.
116916
Step 4
Simplify sin(θ).
Tap for more steps...
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
sin(θ)=116(691)
Step 4.2
Rewrite 116 as 116.
sin(θ)=116691
Step 4.3
Multiply 116 by 66.
sin(θ)=11666691
Step 4.4
Combine and simplify the denominator.
Tap for more steps...
Step 4.4.1
Multiply 116 by 66.
sin(θ)=11666691
Step 4.4.2
Raise 6 to the power of 1.
sin(θ)=11666691
Step 4.4.3
Raise 6 to the power of 1.
sin(θ)=11666691
Step 4.4.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=11661+1691
Step 4.4.5
Add 1 and 1.
sin(θ)=11662691
Step 4.4.6
Rewrite 62 as 6.
Tap for more steps...
Step 4.4.6.1
Use nax=axn to rewrite 6 as 612.
sin(θ)=116(612)2691
Step 4.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=1166122691
Step 4.4.6.3
Combine 12 and 2.
sin(θ)=116622691
Step 4.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.4.6.4.1
Cancel the common factor.
sin(θ)=116622691
Step 4.4.6.4.2
Rewrite the expression.
sin(θ)=1166691
sin(θ)=1166691
Step 4.4.6.5
Evaluate the exponent.
sin(θ)=1166691
sin(θ)=1166691
sin(θ)=1166691
Step 4.5
Cancel the common factor of 6.
Tap for more steps...
Step 4.5.1
Cancel the common factor.
sin(θ)=1166691
Step 4.5.2
Rewrite the expression.
sin(θ)=116(191)
sin(θ)=116(191)
Step 4.6
Combine using the product rule for radicals.
sin(θ)=116(191)
Step 4.7
Multiply 11 by 6.
sin(θ)=66(191)
Step 4.8
Combine 66 and 191.
sin(θ)=6691
Step 4.9
Multiply 6691 by 9191.
sin(θ)=66919191
Step 4.10
Combine and simplify the denominator.
Tap for more steps...
Step 4.10.1
Multiply 6691 by 9191.
sin(θ)=66919191
Step 4.10.2
Raise 91 to the power of 1.
sin(θ)=66919191
Step 4.10.3
Raise 91 to the power of 1.
sin(θ)=66919191
Step 4.10.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=6691911+1
Step 4.10.5
Add 1 and 1.
sin(θ)=6691912
Step 4.10.6
Rewrite 912 as 91.
Tap for more steps...
Step 4.10.6.1
Use nax=axn to rewrite 91 as 9112.
sin(θ)=6691(9112)2
Step 4.10.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=669191122
Step 4.10.6.3
Combine 12 and 2.
sin(θ)=66919122
Step 4.10.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.10.6.4.1
Cancel the common factor.
sin(θ)=66919122
Step 4.10.6.4.2
Rewrite the expression.
sin(θ)=669191
sin(θ)=669191
Step 4.10.6.5
Evaluate the exponent.
sin(θ)=669191
sin(θ)=669191
sin(θ)=669191
Step 4.11
Simplify the numerator.
Tap for more steps...
Step 4.11.1
Combine using the product rule for radicals.
sin(θ)=669191
Step 4.11.2
Multiply 66 by 91.
sin(θ)=600691
sin(θ)=600691
sin(θ)=600691
Step 5
Approximate the result.
sin(θ)=6006910.85163062
 [x2  12  π  xdx ]