Enter a problem...
Trigonometry Examples
B=143B=143 , a=30a=30 , b=28b=28
Step 1
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)csin(A)a=sin(B)b=sin(C)c
Step 2
Substitute the known values into the law of sines to find AA.
sin(A)30=sin(143)28sin(A)30=sin(143)28
Step 3
Step 3.1
Multiply both sides of the equation by 3030.
30sin(A)30=30sin(143)2830sin(A)30=30sin(143)28
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Cancel the common factor of 3030.
Step 3.2.1.1.1
Cancel the common factor.
30sin(A)30=30sin(143)28
Step 3.2.1.1.2
Rewrite the expression.
sin(A)=30sin(143)28
sin(A)=30sin(143)28
sin(A)=30sin(143)28
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify 30sin(143)28.
Step 3.2.2.1.1
Cancel the common factor of 2.
Step 3.2.2.1.1.1
Factor 2 out of 30.
sin(A)=2(15)sin(143)28
Step 3.2.2.1.1.2
Factor 2 out of 28.
sin(A)=2⋅15sin(143)2⋅14
Step 3.2.2.1.1.3
Cancel the common factor.
sin(A)=2⋅15sin(143)2⋅14
Step 3.2.2.1.1.4
Rewrite the expression.
sin(A)=15sin(143)14
sin(A)=15sin(143)14
Step 3.2.2.1.2
Combine 15 and sin(143)14.
sin(A)=15sin(143)14
Step 3.2.2.1.3
Evaluate sin(143).
sin(A)=15⋅0.6018150214
Step 3.2.2.1.4
Multiply 15 by 0.60181502.
sin(A)=9.0272253414
Step 3.2.2.1.5
Divide 9.02722534 by 14.
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
Step 3.3
Take the inverse sine of both sides of the equation to extract A from inside the sine.
A=arcsin(0.64480181)
Step 3.4
Simplify the right side.
Step 3.4.1
Evaluate arcsin(0.64480181).
A=40.15081752
A=40.15081752
Step 3.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
A=180-40.15081752
Step 3.6
Subtract 40.15081752 from 180.
A=139.84918247
Step 3.7
The solution to the equation A=40.15081752.
A=40.15081752,139.84918247
Step 3.8
The triangle is invalid.
Invalid triangle
Invalid triangle
Step 4
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 5
Substitute the known values into the law of sines to find A.
sin(A)30=sin(143)28
Step 6
Step 6.1
Multiply both sides of the equation by 30.
30sin(A)30=30sin(143)28
Step 6.2
Simplify both sides of the equation.
Step 6.2.1
Simplify the left side.
Step 6.2.1.1
Cancel the common factor of 30.
Step 6.2.1.1.1
Cancel the common factor.
30sin(A)30=30sin(143)28
Step 6.2.1.1.2
Rewrite the expression.
sin(A)=30sin(143)28
sin(A)=30sin(143)28
sin(A)=30sin(143)28
Step 6.2.2
Simplify the right side.
Step 6.2.2.1
Simplify 30sin(143)28.
Step 6.2.2.1.1
Cancel the common factor of 2.
Step 6.2.2.1.1.1
Factor 2 out of 30.
sin(A)=2(15)sin(143)28
Step 6.2.2.1.1.2
Factor 2 out of 28.
sin(A)=2⋅15sin(143)2⋅14
Step 6.2.2.1.1.3
Cancel the common factor.
sin(A)=2⋅15sin(143)2⋅14
Step 6.2.2.1.1.4
Rewrite the expression.
sin(A)=15sin(143)14
sin(A)=15sin(143)14
Step 6.2.2.1.2
Combine 15 and sin(143)14.
sin(A)=15sin(143)14
Step 6.2.2.1.3
Evaluate sin(143).
sin(A)=15⋅0.6018150214
Step 6.2.2.1.4
Multiply 15 by 0.60181502.
sin(A)=9.0272253414
Step 6.2.2.1.5
Divide 9.02722534 by 14.
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
Step 6.3
Take the inverse sine of both sides of the equation to extract A from inside the sine.
A=arcsin(0.64480181)
Step 6.4
Simplify the right side.
Step 6.4.1
Evaluate arcsin(0.64480181).
A=40.15081752
A=40.15081752
Step 6.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
A=180-40.15081752
Step 6.6
Subtract 40.15081752 from 180.
A=139.84918247
Step 6.7
The solution to the equation A=40.15081752.
A=40.15081752,139.84918247
Step 6.8
The triangle is invalid.
Invalid triangle
Invalid triangle
Step 7
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 8
Substitute the known values into the law of sines to find A.
sin(A)30=sin(143)28
Step 9
Step 9.1
Multiply both sides of the equation by 30.
30sin(A)30=30sin(143)28
Step 9.2
Simplify both sides of the equation.
Step 9.2.1
Simplify the left side.
Step 9.2.1.1
Cancel the common factor of 30.
Step 9.2.1.1.1
Cancel the common factor.
30sin(A)30=30sin(143)28
Step 9.2.1.1.2
Rewrite the expression.
sin(A)=30sin(143)28
sin(A)=30sin(143)28
sin(A)=30sin(143)28
Step 9.2.2
Simplify the right side.
Step 9.2.2.1
Simplify 30sin(143)28.
Step 9.2.2.1.1
Cancel the common factor of 2.
Step 9.2.2.1.1.1
Factor 2 out of 30.
sin(A)=2(15)sin(143)28
Step 9.2.2.1.1.2
Factor 2 out of 28.
sin(A)=2⋅15sin(143)2⋅14
Step 9.2.2.1.1.3
Cancel the common factor.
sin(A)=2⋅15sin(143)2⋅14
Step 9.2.2.1.1.4
Rewrite the expression.
sin(A)=15sin(143)14
sin(A)=15sin(143)14
Step 9.2.2.1.2
Combine 15 and sin(143)14.
sin(A)=15sin(143)14
Step 9.2.2.1.3
Evaluate sin(143).
sin(A)=15⋅0.6018150214
Step 9.2.2.1.4
Multiply 15 by 0.60181502.
sin(A)=9.0272253414
Step 9.2.2.1.5
Divide 9.02722534 by 14.
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
Step 9.3
Take the inverse sine of both sides of the equation to extract A from inside the sine.
A=arcsin(0.64480181)
Step 9.4
Simplify the right side.
Step 9.4.1
Evaluate arcsin(0.64480181).
A=40.15081752
A=40.15081752
Step 9.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
A=180-40.15081752
Step 9.6
Subtract 40.15081752 from 180.
A=139.84918247
Step 9.7
The solution to the equation A=40.15081752.
A=40.15081752,139.84918247
Step 9.8
The triangle is invalid.
Invalid triangle
Invalid triangle
Step 10
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 11
Substitute the known values into the law of sines to find A.
sin(A)30=sin(143)28
Step 12
Step 12.1
Multiply both sides of the equation by 30.
30sin(A)30=30sin(143)28
Step 12.2
Simplify both sides of the equation.
Step 12.2.1
Simplify the left side.
Step 12.2.1.1
Cancel the common factor of 30.
Step 12.2.1.1.1
Cancel the common factor.
30sin(A)30=30sin(143)28
Step 12.2.1.1.2
Rewrite the expression.
sin(A)=30sin(143)28
sin(A)=30sin(143)28
sin(A)=30sin(143)28
Step 12.2.2
Simplify the right side.
Step 12.2.2.1
Simplify 30sin(143)28.
Step 12.2.2.1.1
Cancel the common factor of 2.
Step 12.2.2.1.1.1
Factor 2 out of 30.
sin(A)=2(15)sin(143)28
Step 12.2.2.1.1.2
Factor 2 out of 28.
sin(A)=2⋅15sin(143)2⋅14
Step 12.2.2.1.1.3
Cancel the common factor.
sin(A)=2⋅15sin(143)2⋅14
Step 12.2.2.1.1.4
Rewrite the expression.
sin(A)=15sin(143)14
sin(A)=15sin(143)14
Step 12.2.2.1.2
Combine 15 and sin(143)14.
sin(A)=15sin(143)14
Step 12.2.2.1.3
Evaluate sin(143).
sin(A)=15⋅0.6018150214
Step 12.2.2.1.4
Multiply 15 by 0.60181502.
sin(A)=9.0272253414
Step 12.2.2.1.5
Divide 9.02722534 by 14.
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
Step 12.3
Take the inverse sine of both sides of the equation to extract A from inside the sine.
A=arcsin(0.64480181)
Step 12.4
Simplify the right side.
Step 12.4.1
Evaluate arcsin(0.64480181).
A=40.15081752
A=40.15081752
Step 12.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
A=180-40.15081752
Step 12.6
Subtract 40.15081752 from 180.
A=139.84918247
Step 12.7
The solution to the equation A=40.15081752.
A=40.15081752,139.84918247
Step 12.8
The triangle is invalid.
Invalid triangle
Invalid triangle
Step 13
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 14
Substitute the known values into the law of sines to find A.
sin(A)30=sin(143)28
Step 15
Step 15.1
Multiply both sides of the equation by 30.
30sin(A)30=30sin(143)28
Step 15.2
Simplify both sides of the equation.
Step 15.2.1
Simplify the left side.
Step 15.2.1.1
Cancel the common factor of 30.
Step 15.2.1.1.1
Cancel the common factor.
30sin(A)30=30sin(143)28
Step 15.2.1.1.2
Rewrite the expression.
sin(A)=30sin(143)28
sin(A)=30sin(143)28
sin(A)=30sin(143)28
Step 15.2.2
Simplify the right side.
Step 15.2.2.1
Simplify 30sin(143)28.
Step 15.2.2.1.1
Cancel the common factor of 2.
Step 15.2.2.1.1.1
Factor 2 out of 30.
sin(A)=2(15)sin(143)28
Step 15.2.2.1.1.2
Factor 2 out of 28.
sin(A)=2⋅15sin(143)2⋅14
Step 15.2.2.1.1.3
Cancel the common factor.
sin(A)=2⋅15sin(143)2⋅14
Step 15.2.2.1.1.4
Rewrite the expression.
sin(A)=15sin(143)14
sin(A)=15sin(143)14
Step 15.2.2.1.2
Combine 15 and sin(143)14.
sin(A)=15sin(143)14
Step 15.2.2.1.3
Evaluate sin(143).
sin(A)=15⋅0.6018150214
Step 15.2.2.1.4
Multiply 15 by 0.60181502.
sin(A)=9.0272253414
Step 15.2.2.1.5
Divide 9.02722534 by 14.
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
Step 15.3
Take the inverse sine of both sides of the equation to extract A from inside the sine.
A=arcsin(0.64480181)
Step 15.4
Simplify the right side.
Step 15.4.1
Evaluate arcsin(0.64480181).
A=40.15081752
A=40.15081752
Step 15.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
A=180-40.15081752
Step 15.6
Subtract 40.15081752 from 180.
A=139.84918247
Step 15.7
The solution to the equation A=40.15081752.
A=40.15081752,139.84918247
Step 15.8
The triangle is invalid.
Invalid triangle
Invalid triangle
Step 16
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 17
Substitute the known values into the law of sines to find A.
sin(A)30=sin(143)28
Step 18
Step 18.1
Multiply both sides of the equation by 30.
30sin(A)30=30sin(143)28
Step 18.2
Simplify both sides of the equation.
Step 18.2.1
Simplify the left side.
Step 18.2.1.1
Cancel the common factor of 30.
Step 18.2.1.1.1
Cancel the common factor.
30sin(A)30=30sin(143)28
Step 18.2.1.1.2
Rewrite the expression.
sin(A)=30sin(143)28
sin(A)=30sin(143)28
sin(A)=30sin(143)28
Step 18.2.2
Simplify the right side.
Step 18.2.2.1
Simplify 30sin(143)28.
Step 18.2.2.1.1
Cancel the common factor of 2.
Step 18.2.2.1.1.1
Factor 2 out of 30.
sin(A)=2(15)sin(143)28
Step 18.2.2.1.1.2
Factor 2 out of 28.
sin(A)=2⋅15sin(143)2⋅14
Step 18.2.2.1.1.3
Cancel the common factor.
sin(A)=2⋅15sin(143)2⋅14
Step 18.2.2.1.1.4
Rewrite the expression.
sin(A)=15sin(143)14
sin(A)=15sin(143)14
Step 18.2.2.1.2
Combine 15 and sin(143)14.
sin(A)=15sin(143)14
Step 18.2.2.1.3
Evaluate sin(143).
sin(A)=15⋅0.6018150214
Step 18.2.2.1.4
Multiply 15 by 0.60181502.
sin(A)=9.0272253414
Step 18.2.2.1.5
Divide 9.02722534 by 14.
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
sin(A)=0.64480181
Step 18.3
Take the inverse sine of both sides of the equation to extract A from inside the sine.
A=arcsin(0.64480181)
Step 18.4
Simplify the right side.
Step 18.4.1
Evaluate arcsin(0.64480181).
A=40.15081752
A=40.15081752
Step 18.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
A=180-40.15081752
Step 18.6
Subtract 40.15081752 from 180.
A=139.84918247
Step 18.7
The solution to the equation A=40.15081752.
A=40.15081752,139.84918247
Step 18.8
The triangle is invalid.
Invalid triangle
Invalid triangle
Step 19
There are not enough parameters given to solve the triangle.
Unknown triangle