Enter a problem...
Trigonometry Examples
A=60 , c=6 , b=2p
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)
Step 2
Solve the equation.
a=√b2+c2-2bccos(A)
Step 3
Substitute the known values into the equation.
a=√(2p)2+(6)2-2(2p)⋅6cos(60)
Step 4
Step 4.1
Apply the product rule to 2p.
a=√22p2+(6)2-2(2p)⋅(6cos(60))
Step 4.2
Raise 2 to the power of 2.
a=√4p2+(6)2-2(2p)⋅(6cos(60))
Step 4.3
Raise 6 to the power of 2.
a=√4p2+36-2(2p)⋅(6cos(60))
Step 4.4
Multiply 2 by -2.
a=√4p2+36-4p⋅(6cos(60))
Step 4.5
Multiply 6 by -4.
a=√4p2+36-24pcos(60)
Step 4.6
The exact value of cos(60) is 12.
a=√4p2+36-24p12
Step 4.7
Cancel the common factor of 2.
Step 4.7.1
Factor 2 out of -24p.
a=√4p2+36+2(-12p)(12)
Step 4.7.2
Cancel the common factor.
a=√4p2+36+2(-12p)(12)
Step 4.7.3
Rewrite the expression.
a=√4p2+36-12p
a=√4p2+36-12p
Step 4.8
Reorder terms.
a=√4p2-12p+36
Step 4.9
Factor 4 out of 4p2-12p+36.
Step 4.9.1
Factor 4 out of 4p2.
a=√4(p2)-12p+36
Step 4.9.2
Factor 4 out of -12p.
a=√4(p2)+4(-3p)+36
Step 4.9.3
Factor 4 out of 36.
a=√4p2+4(-3p)+4⋅9
Step 4.9.4
Factor 4 out of 4p2+4(-3p).
a=√4(p2-3p)+4⋅9
Step 4.9.5
Factor 4 out of 4(p2-3p)+4⋅9.
a=√4(p2-3p+9)
a=√4(p2-3p+9)
Step 4.10
Rewrite 4(p2-3p+9) as 22(p2-3p+32).
Step 4.10.1
Rewrite 4 as 22.
a=√22(p2-3p+9)
Step 4.10.2
Rewrite 9 as 32.
a=√22(p2-3p+32)
a=√22(p2-3p+32)
Step 4.11
Pull terms out from under the radical.
a=2√p2-3p+32
Step 4.12
Raise 3 to the power of 2.
a=2√p2-3p+9
a=2√p2-3p+9
Step 5
There are not enough parameters given to solve the triangle.
Unknown triangle