Trigonometry Examples

Solve the Triangle a=10 , b=9 , c=7
a=10 , b=9 , c=7
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)
Step 2
Solve the equation.
A=arccos(b2+c2-a22bc)
Step 3
Substitute the known values into the equation.
A=arccos((9)2+(7)2-(10)22(9)(7))
Step 4
Simplify the results.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 9 to the power of 2.
A=arccos(81+72-1022(9)7)
Step 4.1.2
Raise 7 to the power of 2.
A=arccos(81+49-1022(9)7)
Step 4.1.3
Raise 10 to the power of 2.
A=arccos(81+49-11002(9)7)
Step 4.1.4
Multiply -1 by 100.
A=arccos(81+49-1002(9)7)
Step 4.1.5
Add 81 and 49.
A=arccos(130-1002(9)7)
Step 4.1.6
Subtract 100 from 130.
A=arccos(302(9)7)
A=arccos(302(9)7)
Step 4.2
Simplify the denominator.
Tap for more steps...
Step 4.2.1
Multiply 2 by 9.
A=arccos(30187)
Step 4.2.2
Multiply 18 by 7.
A=arccos(30126)
A=arccos(30126)
Step 4.3
Cancel the common factor of 30 and 126.
Tap for more steps...
Step 4.3.1
Factor 6 out of 30.
A=arccos(6(5)126)
Step 4.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.1
Factor 6 out of 126.
A=arccos(65621)
Step 4.3.2.2
Cancel the common factor.
A=arccos(65621)
Step 4.3.2.3
Rewrite the expression.
A=arccos(521)
A=arccos(521)
A=arccos(521)
Step 4.4
Evaluate arccos(521).
A=76.225853
A=76.225853
Step 5
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
b2=a2+c2-2accos(B)
Step 6
Solve the equation.
B=arccos(a2+c2-b22ac)
Step 7
Substitute the known values into the equation.
B=arccos((10)2+(7)2-(9)22(10)(7))
Step 8
Simplify the results.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Raise 10 to the power of 2.
B=arccos(100+72-922(10)7)
Step 8.1.2
Raise 7 to the power of 2.
B=arccos(100+49-922(10)7)
Step 8.1.3
Raise 9 to the power of 2.
B=arccos(100+49-1812(10)7)
Step 8.1.4
Multiply -1 by 81.
B=arccos(100+49-812(10)7)
Step 8.1.5
Add 100 and 49.
B=arccos(149-812(10)7)
Step 8.1.6
Subtract 81 from 149.
B=arccos(682(10)7)
B=arccos(682(10)7)
Step 8.2
Simplify the denominator.
Tap for more steps...
Step 8.2.1
Multiply 2 by 10.
B=arccos(68207)
Step 8.2.2
Multiply 20 by 7.
B=arccos(68140)
B=arccos(68140)
Step 8.3
Cancel the common factor of 68 and 140.
Tap for more steps...
Step 8.3.1
Factor 4 out of 68.
B=arccos(4(17)140)
Step 8.3.2
Cancel the common factors.
Tap for more steps...
Step 8.3.2.1
Factor 4 out of 140.
B=arccos(417435)
Step 8.3.2.2
Cancel the common factor.
B=arccos(417435)
Step 8.3.2.3
Rewrite the expression.
B=arccos(1735)
B=arccos(1735)
B=arccos(1735)
Step 8.4
Evaluate arccos(1735).
B=60.94071893
B=60.94071893
Step 9
The sum of all the angles in a triangle is 180 degrees.
76.225853+C+60.94071893=180
Step 10
Solve the equation for C.
Tap for more steps...
Step 10.1
Add 76.225853 and 60.94071893.
C+137.16657193=180
Step 10.2
Move all terms not containing C to the right side of the equation.
Tap for more steps...
Step 10.2.1
Subtract 137.16657193 from both sides of the equation.
C=180-137.16657193
Step 10.2.2
Subtract 137.16657193 from 180.
C=42.83342806
C=42.83342806
C=42.83342806
Step 11
These are the results for all angles and sides for the given triangle.
A=76.225853
B=60.94071893
C=42.83342806
a=10
b=9
c=7
 [x2  12  π  xdx ]