Enter a problem...
Trigonometry Examples
a=25 , b=7 , c=24
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)
Step 2
Solve the equation.
A=arccos(b2+c2-a22bc)
Step 3
Substitute the known values into the equation.
A=arccos((7)2+(24)2-(25)22(7)(24))
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise 7 to the power of 2.
A=arccos(49+242-2522(7)⋅24)
Step 4.1.2
Raise 24 to the power of 2.
A=arccos(49+576-2522(7)⋅24)
Step 4.1.3
Raise 25 to the power of 2.
A=arccos(49+576-1⋅6252(7)⋅24)
Step 4.1.4
Multiply -1 by 625.
A=arccos(49+576-6252(7)⋅24)
Step 4.1.5
Add 49 and 576.
A=arccos(625-6252(7)⋅24)
Step 4.1.6
Subtract 625 from 625.
A=arccos(02(7)⋅24)
A=arccos(02(7)⋅24)
Step 4.2
Simplify the denominator.
Step 4.2.1
Multiply 2 by 7.
A=arccos(014⋅24)
Step 4.2.2
Multiply 14 by 24.
A=arccos(0336)
A=arccos(0336)
Step 4.3
Divide 0 by 336.
A=arccos(0)
Step 4.4
The exact value of arccos(0) is 90.
A=90
A=90
Step 5
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
b2=a2+c2-2accos(B)
Step 6
Solve the equation.
B=arccos(a2+c2-b22ac)
Step 7
Substitute the known values into the equation.
B=arccos((25)2+(24)2-(7)22(25)(24))
Step 8
Step 8.1
Simplify the numerator.
Step 8.1.1
Raise 25 to the power of 2.
B=arccos(625+242-722(25)⋅24)
Step 8.1.2
Raise 24 to the power of 2.
B=arccos(625+576-722(25)⋅24)
Step 8.1.3
Raise 7 to the power of 2.
B=arccos(625+576-1⋅492(25)⋅24)
Step 8.1.4
Multiply -1 by 49.
B=arccos(625+576-492(25)⋅24)
Step 8.1.5
Add 625 and 576.
B=arccos(1201-492(25)⋅24)
Step 8.1.6
Subtract 49 from 1201.
B=arccos(11522(25)⋅24)
B=arccos(11522(25)⋅24)
Step 8.2
Simplify the denominator.
Step 8.2.1
Multiply 2 by 25.
B=arccos(115250⋅24)
Step 8.2.2
Multiply 50 by 24.
B=arccos(11521200)
B=arccos(11521200)
Step 8.3
Cancel the common factor of 1152 and 1200.
Step 8.3.1
Factor 48 out of 1152.
B=arccos(48(24)1200)
Step 8.3.2
Cancel the common factors.
Step 8.3.2.1
Factor 48 out of 1200.
B=arccos(48⋅2448⋅25)
Step 8.3.2.2
Cancel the common factor.
B=arccos(48⋅2448⋅25)
Step 8.3.2.3
Rewrite the expression.
B=arccos(2425)
B=arccos(2425)
B=arccos(2425)
Step 8.4
Evaluate arccos(2425).
B=16.2602047
B=16.2602047
Step 9
The sum of all the angles in a triangle is 180 degrees.
90+C+16.2602047=180
Step 10
Step 10.1
Add 90 and 16.2602047.
C+106.2602047=180
Step 10.2
Move all terms not containing C to the right side of the equation.
Step 10.2.1
Subtract 106.2602047 from both sides of the equation.
C=180-106.2602047
Step 10.2.2
Subtract 106.2602047 from 180.
C=73.73979529
C=73.73979529
C=73.73979529
Step 11
These are the results for all angles and sides for the given triangle.
A=90
B=16.2602047
C=73.73979529
a=25
b=7
c=24