Trigonometry Examples

Find the Tangent Given the Point ( square root of 7, square root of 5)
(7,5)(7,5)
Step 1
To find the tan(θ)tan(θ) between the x-axis and the line between the points (0,0)(0,0) and (7,5)(7,5), draw the triangle between the three points (0,0)(0,0), (7,0)(7,0), and (7,5)(7,5).
Opposite : 55
Adjacent : 77
Step 2
tan(θ)=OppositeAdjacenttan(θ)=OppositeAdjacent therefore tan(θ)=57tan(θ)=57.
5757
Step 3
Simplify tan(θ)tan(θ).
Tap for more steps...
Step 3.1
Multiply 5757 by 7777.
tan(θ)=5777tan(θ)=5777
Step 3.2
Combine and simplify the denominator.
Tap for more steps...
Step 3.2.1
Multiply 5757 by 7777.
tan(θ)=5777tan(θ)=5777
Step 3.2.2
Raise 77 to the power of 11.
tan(θ)=5777tan(θ)=5777
Step 3.2.3
Raise 77 to the power of 11.
tan(θ)=5777tan(θ)=5777
Step 3.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
tan(θ)=5771+1tan(θ)=5771+1
Step 3.2.5
Add 11 and 11.
tan(θ)=5772tan(θ)=5772
Step 3.2.6
Rewrite 7272 as 77.
Tap for more steps...
Step 3.2.6.1
Use nax=axnnax=axn to rewrite 77 as 712712.
tan(θ)=57(712)2tan(θ)=57(712)2
Step 3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
tan(θ)=577122tan(θ)=577122
Step 3.2.6.3
Combine 1212 and 22.
tan(θ)=57722tan(θ)=57722
Step 3.2.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 3.2.6.4.1
Cancel the common factor.
tan(θ)=57722
Step 3.2.6.4.2
Rewrite the expression.
tan(θ)=577
tan(θ)=577
Step 3.2.6.5
Evaluate the exponent.
tan(θ)=577
tan(θ)=577
tan(θ)=577
Step 3.3
Simplify the numerator.
Tap for more steps...
Step 3.3.1
Combine using the product rule for radicals.
tan(θ)=577
Step 3.3.2
Multiply 5 by 7.
tan(θ)=357
tan(θ)=357
tan(θ)=357
Step 4
Approximate the result.
tan(θ)=3570.84515425
 [x2  12  π  xdx ]