Enter a problem...
Trigonometry Examples
(√7,√5)(√7,√5)
Step 1
To find the tan(θ)tan(θ) between the x-axis and the line between the points (0,0)(0,0) and (√7,√5)(√7,√5), draw the triangle between the three points (0,0)(0,0), (√7,0)(√7,0), and (√7,√5)(√7,√5).
Opposite : √5√5
Adjacent : √7√7
Step 2
tan(θ)=OppositeAdjacenttan(θ)=OppositeAdjacent therefore tan(θ)=√5√7tan(θ)=√5√7.
√5√7√5√7
Step 3
Step 3.1
Multiply √5√7√5√7 by √7√7√7√7.
tan(θ)=√5√7⋅√7√7tan(θ)=√5√7⋅√7√7
Step 3.2
Combine and simplify the denominator.
Step 3.2.1
Multiply √5√7√5√7 by √7√7√7√7.
tan(θ)=√5√7√7√7tan(θ)=√5√7√7√7
Step 3.2.2
Raise √7√7 to the power of 11.
tan(θ)=√5√7√7√7tan(θ)=√5√7√7√7
Step 3.2.3
Raise √7√7 to the power of 11.
tan(θ)=√5√7√7√7tan(θ)=√5√7√7√7
Step 3.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
tan(θ)=√5√7√71+1tan(θ)=√5√7√71+1
Step 3.2.5
Add 11 and 11.
tan(θ)=√5√7√72tan(θ)=√5√7√72
Step 3.2.6
Rewrite √72√72 as 77.
Step 3.2.6.1
Use n√ax=axnn√ax=axn to rewrite √7√7 as 712712.
tan(θ)=√5√7(712)2tan(θ)=√5√7(712)2
Step 3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
tan(θ)=√5√7712⋅2tan(θ)=√5√7712⋅2
Step 3.2.6.3
Combine 1212 and 22.
tan(θ)=√5√7722tan(θ)=√5√7722
Step 3.2.6.4
Cancel the common factor of 22.
Step 3.2.6.4.1
Cancel the common factor.
tan(θ)=√5√7722
Step 3.2.6.4.2
Rewrite the expression.
tan(θ)=√5√77
tan(θ)=√5√77
Step 3.2.6.5
Evaluate the exponent.
tan(θ)=√5√77
tan(θ)=√5√77
tan(θ)=√5√77
Step 3.3
Simplify the numerator.
Step 3.3.1
Combine using the product rule for radicals.
tan(θ)=√5⋅77
Step 3.3.2
Multiply 5 by 7.
tan(θ)=√357
tan(θ)=√357
tan(θ)=√357
Step 4
Approximate the result.
tan(θ)=√357≈0.84515425