Trigonometry Examples

Find the Angle Between the Vectors (6,10) , (12,5)
(6,10) , (12,5)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗b⃗|a⃗||b⃗|)
Step 2
Find the dot product.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗b⃗=612+105
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 6 by 12.
a⃗b⃗=72+105
Step 2.2.1.2
Multiply 10 by 5.
a⃗b⃗=72+50
a⃗b⃗=72+50
Step 2.2.2
Add 72 and 50.
a⃗b⃗=122
a⃗b⃗=122
a⃗b⃗=122
Step 3
Find the magnitude of a⃗.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=62+102
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Raise 6 to the power of 2.
|a⃗|=36+102
Step 3.2.2
Raise 10 to the power of 2.
|a⃗|=36+100
Step 3.2.3
Add 36 and 100.
|a⃗|=136
Step 3.2.4
Rewrite 136 as 2234.
Tap for more steps...
Step 3.2.4.1
Factor 4 out of 136.
|a⃗|=4(34)
Step 3.2.4.2
Rewrite 4 as 22.
|a⃗|=2234
|a⃗|=2234
Step 3.2.5
Pull terms out from under the radical.
|a⃗|=234
|a⃗|=234
|a⃗|=234
Step 4
Find the magnitude of b⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=122+52
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Raise 12 to the power of 2.
|b⃗|=144+52
Step 4.2.2
Raise 5 to the power of 2.
|b⃗|=144+25
Step 4.2.3
Add 144 and 25.
|b⃗|=169
Step 4.2.4
Rewrite 169 as 132.
|b⃗|=132
Step 4.2.5
Pull terms out from under the radical, assuming positive real numbers.
|b⃗|=13
|b⃗|=13
|b⃗|=13
Step 5
Substitute the values into the formula.
θ=arccos(12223413)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Cancel the common factor of 122 and 2.
Tap for more steps...
Step 6.1.1
Factor 2 out of 122.
θ=arccos(26123413)
Step 6.1.2
Cancel the common factors.
Tap for more steps...
Step 6.1.2.1
Factor 2 out of 23413.
θ=arccos(2612(3413))
Step 6.1.2.2
Cancel the common factor.
θ=arccos(2612(3413))
Step 6.1.2.3
Rewrite the expression.
θ=arccos(613413)
θ=arccos(613413)
θ=arccos(613413)
Step 6.2
Move 13 to the left of 34.
θ=arccos(611334)
Step 6.3
Multiply 611334 by 3434.
θ=arccos(6113343434)
Step 6.4
Combine and simplify the denominator.
Tap for more steps...
Step 6.4.1
Multiply 611334 by 3434.
θ=arccos(6134133434)
Step 6.4.2
Move 34.
θ=arccos(613413(3434))
Step 6.4.3
Raise 34 to the power of 1.
θ=arccos(613413(34134))
Step 6.4.4
Raise 34 to the power of 1.
θ=arccos(613413(341341))
Step 6.4.5
Use the power rule aman=am+n to combine exponents.
θ=arccos(613413341+1)
Step 6.4.6
Add 1 and 1.
θ=arccos(613413342)
Step 6.4.7
Rewrite 342 as 34.
Tap for more steps...
Step 6.4.7.1
Use nax=axn to rewrite 34 as 3412.
θ=arccos(613413(3412)2)
Step 6.4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(61341334122)
Step 6.4.7.3
Combine 12 and 2.
θ=arccos(6134133422)
Step 6.4.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.4.7.4.1
Cancel the common factor.
θ=arccos(6134133422)
Step 6.4.7.4.2
Rewrite the expression.
θ=arccos(613413341)
θ=arccos(613413341)
Step 6.4.7.5
Evaluate the exponent.
θ=arccos(61341334)
θ=arccos(61341334)
θ=arccos(61341334)
Step 6.5
Multiply 13 by 34.
θ=arccos(6134442)
Step 6.6
Evaluate arccos(6134442).
θ=36.41637851
θ=36.41637851
 [x2  12  π  xdx ]