Enter a problem...
Trigonometry Examples
(6,10) , (12,5)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗⋅b⃗=6⋅12+10⋅5
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 6 by 12.
a⃗⋅b⃗=72+10⋅5
Step 2.2.1.2
Multiply 10 by 5.
a⃗⋅b⃗=72+50
a⃗⋅b⃗=72+50
Step 2.2.2
Add 72 and 50.
a⃗⋅b⃗=122
a⃗⋅b⃗=122
a⃗⋅b⃗=122
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√62+102
Step 3.2
Simplify.
Step 3.2.1
Raise 6 to the power of 2.
|a⃗|=√36+102
Step 3.2.2
Raise 10 to the power of 2.
|a⃗|=√36+100
Step 3.2.3
Add 36 and 100.
|a⃗|=√136
Step 3.2.4
Rewrite 136 as 22⋅34.
Step 3.2.4.1
Factor 4 out of 136.
|a⃗|=√4(34)
Step 3.2.4.2
Rewrite 4 as 22.
|a⃗|=√22⋅34
|a⃗|=√22⋅34
Step 3.2.5
Pull terms out from under the radical.
|a⃗|=2√34
|a⃗|=2√34
|a⃗|=2√34
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√122+52
Step 4.2
Simplify.
Step 4.2.1
Raise 12 to the power of 2.
|b⃗|=√144+52
Step 4.2.2
Raise 5 to the power of 2.
|b⃗|=√144+25
Step 4.2.3
Add 144 and 25.
|b⃗|=√169
Step 4.2.4
Rewrite 169 as 132.
|b⃗|=√132
Step 4.2.5
Pull terms out from under the radical, assuming positive real numbers.
|b⃗|=13
|b⃗|=13
|b⃗|=13
Step 5
Substitute the values into the formula.
θ=arccos(1222√34⋅13)
Step 6
Step 6.1
Cancel the common factor of 122 and 2.
Step 6.1.1
Factor 2 out of 122.
θ=arccos(2⋅612√34⋅13)
Step 6.1.2
Cancel the common factors.
Step 6.1.2.1
Factor 2 out of 2√34⋅13.
θ=arccos(2⋅612(√34⋅13))
Step 6.1.2.2
Cancel the common factor.
θ=arccos(2⋅612(√34⋅13))
Step 6.1.2.3
Rewrite the expression.
θ=arccos(61√34⋅13)
θ=arccos(61√34⋅13)
θ=arccos(61√34⋅13)
Step 6.2
Move 13 to the left of √34.
θ=arccos(6113√34)
Step 6.3
Multiply 6113√34 by √34√34.
θ=arccos(6113√34⋅√34√34)
Step 6.4
Combine and simplify the denominator.
Step 6.4.1
Multiply 6113√34 by √34√34.
θ=arccos(61√3413√34√34)
Step 6.4.2
Move √34.
θ=arccos(61√3413(√34√34))
Step 6.4.3
Raise √34 to the power of 1.
θ=arccos(61√3413(√341√34))
Step 6.4.4
Raise √34 to the power of 1.
θ=arccos(61√3413(√341√341))
Step 6.4.5
Use the power rule aman=am+n to combine exponents.
θ=arccos(61√3413√341+1)
Step 6.4.6
Add 1 and 1.
θ=arccos(61√3413√342)
Step 6.4.7
Rewrite √342 as 34.
Step 6.4.7.1
Use n√ax=axn to rewrite √34 as 3412.
θ=arccos(61√3413(3412)2)
Step 6.4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(61√3413⋅3412⋅2)
Step 6.4.7.3
Combine 12 and 2.
θ=arccos(61√3413⋅3422)
Step 6.4.7.4
Cancel the common factor of 2.
Step 6.4.7.4.1
Cancel the common factor.
θ=arccos(61√3413⋅3422)
Step 6.4.7.4.2
Rewrite the expression.
θ=arccos(61√3413⋅341)
θ=arccos(61√3413⋅341)
Step 6.4.7.5
Evaluate the exponent.
θ=arccos(61√3413⋅34)
θ=arccos(61√3413⋅34)
θ=arccos(61√3413⋅34)
Step 6.5
Multiply 13 by 34.
θ=arccos(61√34442)
Step 6.6
Evaluate arccos(61√34442).
θ=36.41637851
θ=36.41637851