Enter a problem...
Trigonometry Examples
(-2,0)(−2,0) , (1,7)(1,7)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗⋅b⃗=-2⋅1+0⋅7a⃗⋅b⃗=−2⋅1+0⋅7
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply -2−2 by 11.
a⃗⋅b⃗=-2+0⋅7a⃗⋅b⃗=−2+0⋅7
Step 2.2.1.2
Multiply 00 by 77.
a⃗⋅b⃗=-2+0a⃗⋅b⃗=−2+0
a⃗⋅b⃗=-2+0a⃗⋅b⃗=−2+0
Step 2.2.2
Add -2−2 and 00.
a⃗⋅b⃗=-2a⃗⋅b⃗=−2
a⃗⋅b⃗=-2a⃗⋅b⃗=−2
a⃗⋅b⃗=-2a⃗⋅b⃗=−2
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√(-2)2+02|a⃗|=√(−2)2+02
Step 3.2
Simplify.
Step 3.2.1
Raise -2−2 to the power of 22.
|a⃗|=√4+02|a⃗|=√4+02
Step 3.2.2
Raising 00 to any positive power yields 00.
|a⃗|=√4+0|a⃗|=√4+0
Step 3.2.3
Add 44 and 00.
|a⃗|=√4|a⃗|=√4
Step 3.2.4
Rewrite 44 as 2222.
|a⃗|=√22|a⃗|=√22
Step 3.2.5
Pull terms out from under the radical, assuming positive real numbers.
|a⃗|=2|a⃗|=2
|a⃗|=2|a⃗|=2
|a⃗|=2|a⃗|=2
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√12+72|b⃗|=√12+72
Step 4.2
Simplify.
Step 4.2.1
One to any power is one.
|b⃗|=√1+72|b⃗|=√1+72
Step 4.2.2
Raise 77 to the power of 22.
|b⃗|=√1+49|b⃗|=√1+49
Step 4.2.3
Add 11 and 4949.
|b⃗|=√50|b⃗|=√50
Step 4.2.4
Rewrite 5050 as 52⋅252⋅2.
Step 4.2.4.1
Factor 2525 out of 5050.
|b⃗|=√25(2)|b⃗|=√25(2)
Step 4.2.4.2
Rewrite 2525 as 5252.
|b⃗|=√52⋅2|b⃗|=√52⋅2
|b⃗|=√52⋅2|b⃗|=√52⋅2
Step 4.2.5
Pull terms out from under the radical.
|b⃗|=5√2|b⃗|=5√2
|b⃗|=5√2|b⃗|=5√2
|b⃗|=5√2|b⃗|=5√2
Step 5
Substitute the values into the formula.
θ=arccos(-22(5√2))θ=arccos⎛⎜⎝−22(5√2)⎞⎟⎠
Step 6
Step 6.1
Cancel the common factor of -2−2 and 22.
Step 6.1.1
Factor 22 out of -2−2.
θ=arccos(2⋅-12(5√2))θ=arccos⎛⎜⎝2⋅−12(5√2)⎞⎟⎠
Step 6.1.2
Cancel the common factors.
Step 6.1.2.1
Cancel the common factor.
θ=arccos(2⋅-12(5√2))
Step 6.1.2.2
Rewrite the expression.
θ=arccos(-15√2)
θ=arccos(-15√2)
θ=arccos(-15√2)
Step 6.2
Move the negative in front of the fraction.
θ=arccos(-15√2)
Step 6.3
Multiply 15√2 by √2√2.
θ=arccos(-(15√2⋅√2√2))
Step 6.4
Combine and simplify the denominator.
Step 6.4.1
Multiply 15√2 by √2√2.
θ=arccos(-√25√2√2)
Step 6.4.2
Move √2.
θ=arccos(-√25(√2√2))
Step 6.4.3
Raise √2 to the power of 1.
θ=arccos(-√25(√21√2))
Step 6.4.4
Raise √2 to the power of 1.
θ=arccos(-√25(√21√21))
Step 6.4.5
Use the power rule aman=am+n to combine exponents.
θ=arccos(-√25√21+1)
Step 6.4.6
Add 1 and 1.
θ=arccos(-√25√22)
Step 6.4.7
Rewrite √22 as 2.
Step 6.4.7.1
Use n√ax=axn to rewrite √2 as 212.
θ=arccos(-√25(212)2)
Step 6.4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(-√25⋅212⋅2)
Step 6.4.7.3
Combine 12 and 2.
θ=arccos(-√25⋅222)
Step 6.4.7.4
Cancel the common factor of 2.
Step 6.4.7.4.1
Cancel the common factor.
θ=arccos(-√25⋅222)
Step 6.4.7.4.2
Rewrite the expression.
θ=arccos(-√25⋅21)
θ=arccos(-√25⋅21)
Step 6.4.7.5
Evaluate the exponent.
θ=arccos(-√25⋅2)
θ=arccos(-√25⋅2)
θ=arccos(-√25⋅2)
Step 6.5
Multiply 5 by 2.
θ=arccos(-√210)
Step 6.6
Evaluate arccos(-√210).
θ=98.13010235
θ=98.13010235