Trigonometry Examples

Find the Angle Between the Vectors (-2,0) , (1,7)
(-2,0)(2,0) , (1,7)(1,7)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗b⃗|a⃗||b⃗|)θ=arccos(a⃗b⃗|a⃗||b⃗|)
Step 2
Find the dot product.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗b⃗=-21+07a⃗b⃗=21+07
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply -22 by 11.
a⃗b⃗=-2+07a⃗b⃗=2+07
Step 2.2.1.2
Multiply 00 by 77.
a⃗b⃗=-2+0a⃗b⃗=2+0
a⃗b⃗=-2+0a⃗b⃗=2+0
Step 2.2.2
Add -22 and 00.
a⃗b⃗=-2a⃗b⃗=2
a⃗b⃗=-2a⃗b⃗=2
a⃗b⃗=-2a⃗b⃗=2
Step 3
Find the magnitude of a⃗a⃗.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=(-2)2+02|a⃗|=(2)2+02
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Raise -22 to the power of 22.
|a⃗|=4+02|a⃗|=4+02
Step 3.2.2
Raising 00 to any positive power yields 00.
|a⃗|=4+0|a⃗|=4+0
Step 3.2.3
Add 44 and 00.
|a⃗|=4|a⃗|=4
Step 3.2.4
Rewrite 44 as 2222.
|a⃗|=22|a⃗|=22
Step 3.2.5
Pull terms out from under the radical, assuming positive real numbers.
|a⃗|=2|a⃗|=2
|a⃗|=2|a⃗|=2
|a⃗|=2|a⃗|=2
Step 4
Find the magnitude of b⃗b⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=12+72|b⃗|=12+72
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
One to any power is one.
|b⃗|=1+72|b⃗|=1+72
Step 4.2.2
Raise 77 to the power of 22.
|b⃗|=1+49|b⃗|=1+49
Step 4.2.3
Add 11 and 4949.
|b⃗|=50|b⃗|=50
Step 4.2.4
Rewrite 5050 as 522522.
Tap for more steps...
Step 4.2.4.1
Factor 2525 out of 5050.
|b⃗|=25(2)|b⃗|=25(2)
Step 4.2.4.2
Rewrite 2525 as 5252.
|b⃗|=522|b⃗|=522
|b⃗|=522|b⃗|=522
Step 4.2.5
Pull terms out from under the radical.
|b⃗|=52|b⃗|=52
|b⃗|=52|b⃗|=52
|b⃗|=52|b⃗|=52
Step 5
Substitute the values into the formula.
θ=arccos(-22(52))θ=arccos22(52)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Cancel the common factor of -22 and 22.
Tap for more steps...
Step 6.1.1
Factor 22 out of -22.
θ=arccos(2-12(52))θ=arccos212(52)
Step 6.1.2
Cancel the common factors.
Tap for more steps...
Step 6.1.2.1
Cancel the common factor.
θ=arccos(2-12(52))
Step 6.1.2.2
Rewrite the expression.
θ=arccos(-152)
θ=arccos(-152)
θ=arccos(-152)
Step 6.2
Move the negative in front of the fraction.
θ=arccos(-152)
Step 6.3
Multiply 152 by 22.
θ=arccos(-(15222))
Step 6.4
Combine and simplify the denominator.
Tap for more steps...
Step 6.4.1
Multiply 152 by 22.
θ=arccos(-2522)
Step 6.4.2
Move 2.
θ=arccos(-25(22))
Step 6.4.3
Raise 2 to the power of 1.
θ=arccos(-25(212))
Step 6.4.4
Raise 2 to the power of 1.
θ=arccos(-25(2121))
Step 6.4.5
Use the power rule aman=am+n to combine exponents.
θ=arccos(-2521+1)
Step 6.4.6
Add 1 and 1.
θ=arccos(-2522)
Step 6.4.7
Rewrite 22 as 2.
Tap for more steps...
Step 6.4.7.1
Use nax=axn to rewrite 2 as 212.
θ=arccos(-25(212)2)
Step 6.4.7.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(-252122)
Step 6.4.7.3
Combine 12 and 2.
θ=arccos(-25222)
Step 6.4.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.4.7.4.1
Cancel the common factor.
θ=arccos(-25222)
Step 6.4.7.4.2
Rewrite the expression.
θ=arccos(-2521)
θ=arccos(-2521)
Step 6.4.7.5
Evaluate the exponent.
θ=arccos(-252)
θ=arccos(-252)
θ=arccos(-252)
Step 6.5
Multiply 5 by 2.
θ=arccos(-210)
Step 6.6
Evaluate arccos(-210).
θ=98.13010235
θ=98.13010235
 [x2  12  π  xdx ]