Enter a problem...
Trigonometry Examples
(1,53)(1,53) , (1,-8)(1,−8)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)θ=arccos(a⃗⋅b⃗|a⃗||b⃗|)
Step 2
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗⋅b⃗=1⋅1+53⋅-8a⃗⋅b⃗=1⋅1+53⋅−8
Step 2.2
Simplify.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 11 by 11.
a⃗⋅b⃗=1+53⋅-8a⃗⋅b⃗=1+53⋅−8
Step 2.2.1.2
Multiply 53⋅-853⋅−8.
Step 2.2.1.2.1
Combine 5353 and -8−8.
a⃗⋅b⃗=1+5⋅-83a⃗⋅b⃗=1+5⋅−83
Step 2.2.1.2.2
Multiply 55 by -8−8.
a⃗⋅b⃗=1+-403a⃗⋅b⃗=1+−403
a⃗⋅b⃗=1+-403a⃗⋅b⃗=1+−403
Step 2.2.1.3
Move the negative in front of the fraction.
a⃗⋅b⃗=1-403a⃗⋅b⃗=1−403
a⃗⋅b⃗=1-403a⃗⋅b⃗=1−403
Step 2.2.2
Write 11 as a fraction with a common denominator.
a⃗⋅b⃗=33-403a⃗⋅b⃗=33−403
Step 2.2.3
Combine the numerators over the common denominator.
a⃗⋅b⃗=3-403a⃗⋅b⃗=3−403
Step 2.2.4
Subtract 4040 from 33.
a⃗⋅b⃗=-373a⃗⋅b⃗=−373
Step 2.2.5
Move the negative in front of the fraction.
a⃗⋅b⃗=-373a⃗⋅b⃗=−373
a⃗⋅b⃗=-373a⃗⋅b⃗=−373
a⃗⋅b⃗=-373a⃗⋅b⃗=−373
Step 3
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=√12+(53)2|a⃗|=√12+(53)2
Step 3.2
Simplify.
Step 3.2.1
One to any power is one.
|a⃗|=√1+(53)2|a⃗|=√1+(53)2
Step 3.2.2
Apply the product rule to 5353.
|a⃗|=√1+5232|a⃗|=√1+5232
Step 3.2.3
Raise 55 to the power of 22.
|a⃗|=√1+2532|a⃗|=√1+2532
Step 3.2.4
Raise 33 to the power of 22.
|a⃗|=√1+259|a⃗|=√1+259
Step 3.2.5
Write 11 as a fraction with a common denominator.
|a⃗|=√99+259|a⃗|=√99+259
Step 3.2.6
Combine the numerators over the common denominator.
|a⃗|=√9+259|a⃗|=√9+259
Step 3.2.7
Add 99 and 2525.
|a⃗|=√349|a⃗|=√349
Step 3.2.8
Rewrite √349√349 as √34√9√34√9.
|a⃗|=√34√9|a⃗|=√34√9
Step 3.2.9
Simplify the denominator.
Step 3.2.9.1
Rewrite 99 as 3232.
|a⃗|=√34√32|a⃗|=√34√32
Step 3.2.9.2
Pull terms out from under the radical, assuming positive real numbers.
|a⃗|=√343|a⃗|=√343
|a⃗|=√343|a⃗|=√343
|a⃗|=√343|a⃗|=√343
|a⃗|=√343|a⃗|=√343
Step 4
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=√12+(-8)2|b⃗|=√12+(−8)2
Step 4.2
Simplify.
Step 4.2.1
One to any power is one.
|b⃗|=√1+(-8)2|b⃗|=√1+(−8)2
Step 4.2.2
Raise -8−8 to the power of 22.
|b⃗|=√1+64|b⃗|=√1+64
Step 4.2.3
Add 11 and 6464.
|b⃗|=√65|b⃗|=√65
|b⃗|=√65|b⃗|=√65
|b⃗|=√65|b⃗|=√65
Step 5
Substitute the values into the formula.
θ=arccos(-373√343√65)θ=arccos⎛⎜⎝−373√343√65⎞⎟⎠
Step 6
Step 6.1
Multiply the numerator by the reciprocal of the denominator.
θ=arccos(-373⋅1√343√65)θ=arccos⎛⎜⎝−373⋅1√343√65⎞⎟⎠
Step 6.2
Combine √343√343 and √65√65.
θ=arccos(-373⋅1√34√653)θ=arccos⎛⎜⎝−373⋅1√34√653⎞⎟⎠
Step 6.3
Simplify the numerator.
Step 6.3.1
Combine using the product rule for radicals.
θ=arccos(-373⋅1√34⋅653)θ=arccos⎛⎜⎝−373⋅1√34⋅653⎞⎟⎠
Step 6.3.2
Multiply 3434 by 6565.
θ=arccos(-373⋅1√22103)θ=arccos⎛⎜⎝−373⋅1√22103⎞⎟⎠
θ=arccos(-373⋅1√22103)θ=arccos⎛⎜⎝−373⋅1√22103⎞⎟⎠
Step 6.4
Multiply the numerator by the reciprocal of the denominator.
θ=arccos(-373(13√2210))θ=arccos(−373(13√2210))
Step 6.5
Multiply 3√22103√2210 by 11.
θ=arccos(-373⋅3√2210)θ=arccos(−373⋅3√2210)
Step 6.6
Cancel the common factor of 33.
Step 6.6.1
Move the leading negative in -373−373 into the numerator.
θ=arccos(-373⋅3√2210)θ=arccos(−373⋅3√2210)
Step 6.6.2
Cancel the common factor.
θ=arccos(-373⋅3√2210)
Step 6.6.3
Rewrite the expression.
θ=arccos(-371√2210)
θ=arccos(-371√2210)
Step 6.7
Combine -37 and 1√2210.
θ=arccos(-37√2210)
Step 6.8
Move the negative in front of the fraction.
θ=arccos(-37√2210)
Step 6.9
Multiply 37√2210 by √2210√2210.
θ=arccos(-(37√2210⋅√2210√2210))
Step 6.10
Combine and simplify the denominator.
Step 6.10.1
Multiply 37√2210 by √2210√2210.
θ=arccos(-37√2210√2210√2210)
Step 6.10.2
Raise √2210 to the power of 1.
θ=arccos(-37√2210√22101√2210)
Step 6.10.3
Raise √2210 to the power of 1.
θ=arccos(-37√2210√22101√22101)
Step 6.10.4
Use the power rule aman=am+n to combine exponents.
θ=arccos(-37√2210√22101+1)
Step 6.10.5
Add 1 and 1.
θ=arccos(-37√2210√22102)
Step 6.10.6
Rewrite √22102 as 2210.
Step 6.10.6.1
Use n√ax=axn to rewrite √2210 as 221012.
θ=arccos(-37√2210(221012)2)
Step 6.10.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(-37√2210221012⋅2)
Step 6.10.6.3
Combine 12 and 2.
θ=arccos(-37√2210221022)
Step 6.10.6.4
Cancel the common factor of 2.
Step 6.10.6.4.1
Cancel the common factor.
θ=arccos(-37√2210221022)
Step 6.10.6.4.2
Rewrite the expression.
θ=arccos(-37√221022101)
θ=arccos(-37√221022101)
Step 6.10.6.5
Evaluate the exponent.
θ=arccos(-37√22102210)
θ=arccos(-37√22102210)
θ=arccos(-37√22102210)
Step 6.11
Evaluate arccos(-37√22102210).
θ=141.91122711
θ=141.91122711