Trigonometry Examples

Find the Angle Between the Vectors (1,5/3) , (1,-8)
(1,53)(1,53) , (1,-8)(1,8)
Step 1
Use the dot product formula to find the angle between two vectors.
θ=arccos(a⃗b⃗|a⃗||b⃗|)θ=arccos(a⃗b⃗|a⃗||b⃗|)
Step 2
Find the dot product.
Tap for more steps...
Step 2.1
The dot product of two vectors is the sum of the products of the their components.
a⃗b⃗=11+53-8a⃗b⃗=11+538
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 11 by 11.
a⃗b⃗=1+53-8a⃗b⃗=1+538
Step 2.2.1.2
Multiply 53-8538.
Tap for more steps...
Step 2.2.1.2.1
Combine 5353 and -88.
a⃗b⃗=1+5-83a⃗b⃗=1+583
Step 2.2.1.2.2
Multiply 55 by -88.
a⃗b⃗=1+-403a⃗b⃗=1+403
a⃗b⃗=1+-403a⃗b⃗=1+403
Step 2.2.1.3
Move the negative in front of the fraction.
a⃗b⃗=1-403a⃗b⃗=1403
a⃗b⃗=1-403a⃗b⃗=1403
Step 2.2.2
Write 11 as a fraction with a common denominator.
a⃗b⃗=33-403a⃗b⃗=33403
Step 2.2.3
Combine the numerators over the common denominator.
a⃗b⃗=3-403a⃗b⃗=3403
Step 2.2.4
Subtract 4040 from 33.
a⃗b⃗=-373a⃗b⃗=373
Step 2.2.5
Move the negative in front of the fraction.
a⃗b⃗=-373a⃗b⃗=373
a⃗b⃗=-373a⃗b⃗=373
a⃗b⃗=-373a⃗b⃗=373
Step 3
Find the magnitude of a⃗a⃗.
Tap for more steps...
Step 3.1
The norm is the square root of the sum of squares of each element in the vector.
|a⃗|=12+(53)2|a⃗|=12+(53)2
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
One to any power is one.
|a⃗|=1+(53)2|a⃗|=1+(53)2
Step 3.2.2
Apply the product rule to 5353.
|a⃗|=1+5232|a⃗|=1+5232
Step 3.2.3
Raise 55 to the power of 22.
|a⃗|=1+2532|a⃗|=1+2532
Step 3.2.4
Raise 33 to the power of 22.
|a⃗|=1+259|a⃗|=1+259
Step 3.2.5
Write 11 as a fraction with a common denominator.
|a⃗|=99+259|a⃗|=99+259
Step 3.2.6
Combine the numerators over the common denominator.
|a⃗|=9+259|a⃗|=9+259
Step 3.2.7
Add 99 and 2525.
|a⃗|=349|a⃗|=349
Step 3.2.8
Rewrite 349349 as 349349.
|a⃗|=349|a⃗|=349
Step 3.2.9
Simplify the denominator.
Tap for more steps...
Step 3.2.9.1
Rewrite 99 as 3232.
|a⃗|=3432|a⃗|=3432
Step 3.2.9.2
Pull terms out from under the radical, assuming positive real numbers.
|a⃗|=343|a⃗|=343
|a⃗|=343|a⃗|=343
|a⃗|=343|a⃗|=343
|a⃗|=343|a⃗|=343
Step 4
Find the magnitude of b⃗b⃗.
Tap for more steps...
Step 4.1
The norm is the square root of the sum of squares of each element in the vector.
|b⃗|=12+(-8)2|b⃗|=12+(8)2
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
One to any power is one.
|b⃗|=1+(-8)2|b⃗|=1+(8)2
Step 4.2.2
Raise -88 to the power of 22.
|b⃗|=1+64|b⃗|=1+64
Step 4.2.3
Add 11 and 6464.
|b⃗|=65|b⃗|=65
|b⃗|=65|b⃗|=65
|b⃗|=65|b⃗|=65
Step 5
Substitute the values into the formula.
θ=arccos(-37334365)θ=arccos37334365
Step 6
Simplify.
Tap for more steps...
Step 6.1
Multiply the numerator by the reciprocal of the denominator.
θ=arccos(-373134365)θ=arccos373134365
Step 6.2
Combine 343343 and 6565.
θ=arccos(-373134653)θ=arccos373134653
Step 6.3
Simplify the numerator.
Tap for more steps...
Step 6.3.1
Combine using the product rule for radicals.
θ=arccos(-373134653)θ=arccos373134653
Step 6.3.2
Multiply 3434 by 6565.
θ=arccos(-373122103)θ=arccos373122103
θ=arccos(-373122103)θ=arccos373122103
Step 6.4
Multiply the numerator by the reciprocal of the denominator.
θ=arccos(-373(132210))θ=arccos(373(132210))
Step 6.5
Multiply 3221032210 by 11.
θ=arccos(-37332210)θ=arccos(37332210)
Step 6.6
Cancel the common factor of 33.
Tap for more steps...
Step 6.6.1
Move the leading negative in -373373 into the numerator.
θ=arccos(-37332210)θ=arccos(37332210)
Step 6.6.2
Cancel the common factor.
θ=arccos(-37332210)
Step 6.6.3
Rewrite the expression.
θ=arccos(-3712210)
θ=arccos(-3712210)
Step 6.7
Combine -37 and 12210.
θ=arccos(-372210)
Step 6.8
Move the negative in front of the fraction.
θ=arccos(-372210)
Step 6.9
Multiply 372210 by 22102210.
θ=arccos(-(37221022102210))
Step 6.10
Combine and simplify the denominator.
Tap for more steps...
Step 6.10.1
Multiply 372210 by 22102210.
θ=arccos(-37221022102210)
Step 6.10.2
Raise 2210 to the power of 1.
θ=arccos(-372210221012210)
Step 6.10.3
Raise 2210 to the power of 1.
θ=arccos(-3722102210122101)
Step 6.10.4
Use the power rule aman=am+n to combine exponents.
θ=arccos(-37221022101+1)
Step 6.10.5
Add 1 and 1.
θ=arccos(-37221022102)
Step 6.10.6
Rewrite 22102 as 2210.
Tap for more steps...
Step 6.10.6.1
Use nax=axn to rewrite 2210 as 221012.
θ=arccos(-372210(221012)2)
Step 6.10.6.2
Apply the power rule and multiply exponents, (am)n=amn.
θ=arccos(-3722102210122)
Step 6.10.6.3
Combine 12 and 2.
θ=arccos(-372210221022)
Step 6.10.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.10.6.4.1
Cancel the common factor.
θ=arccos(-372210221022)
Step 6.10.6.4.2
Rewrite the expression.
θ=arccos(-37221022101)
θ=arccos(-37221022101)
Step 6.10.6.5
Evaluate the exponent.
θ=arccos(-3722102210)
θ=arccos(-3722102210)
θ=arccos(-3722102210)
Step 6.11
Evaluate arccos(-3722102210).
θ=141.91122711
θ=141.91122711
 [x2  12  π  xdx ]