Trigonometry Examples

Graph h(x)e^(x+1)+3
Step 1
Simplify.
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Rewrite the expression.
Step 1.2.2.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.2.1
Cancel the common factor.
Step 1.2.2.2.2
Divide by .
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Move the negative in front of the fraction.
Step 2
Find where the expression is undefined.
Step 3
Evaluate to find the horizontal asymptote.
Tap for more steps...
Step 3.1
Evaluate the limit.
Tap for more steps...
Step 3.1.1
Move the term outside of the limit because it is constant with respect to .
Step 3.1.2
Move the term outside of the limit because it is constant with respect to .
Step 3.2
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 3.3
Multiply by .
Step 4
List the horizontal asymptotes:
Step 5
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
Step 6
This is the set of all asymptotes.
Vertical Asymptotes:
Horizontal Asymptotes:
No Oblique Asymptotes
Step 7