Trigonometry Examples

Graph natural log of 1/(2x)+2
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Set the argument of the logarithm equal to zero.
Step 1.2
Solve for .
Tap for more steps...
Step 1.2.1
Subtract from both sides of the equation.
Step 1.2.2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 1.2.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 1.2.2.2
The LCM of one and any expression is the expression.
Step 1.2.3
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 1.2.3.1
Multiply each term in by .
Step 1.2.3.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.2.1
Factor out of .
Step 1.2.3.2.2.2
Cancel the common factor.
Step 1.2.3.2.2.3
Rewrite the expression.
Step 1.2.3.2.3
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.3.1
Cancel the common factor.
Step 1.2.3.2.3.2
Rewrite the expression.
Step 1.2.3.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.3.1
Multiply by .
Step 1.2.4
Solve the equation.
Tap for more steps...
Step 1.2.4.1
Rewrite the equation as .
Step 1.2.4.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.4.2.1
Divide each term in by .
Step 1.2.4.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.4.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.2.2.1.1
Cancel the common factor.
Step 1.2.4.2.2.1.2
Divide by .
Step 1.2.4.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.4.2.3.1
Move the negative in front of the fraction.
Step 1.3
The vertical asymptote occurs at .
Vertical Asymptote:
Vertical Asymptote:
Step 2
Find the point at .
Tap for more steps...
Step 2.1
Replace the variable with in the expression.
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Rewrite the expression.
Step 2.2.2
To write as a fraction with a common denominator, multiply by .
Step 2.2.3
Combine and .
Step 2.2.4
Combine the numerators over the common denominator.
Step 2.2.5
Simplify the numerator.
Tap for more steps...
Step 2.2.5.1
Multiply by .
Step 2.2.5.2
Add and .
Step 2.2.6
The final answer is .
Step 2.3
Convert to decimal.
Step 3
Find the point at .
Tap for more steps...
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Multiply by .
Step 3.2.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.3
Combine and .
Step 3.2.4
Combine the numerators over the common denominator.
Step 3.2.5
Simplify the numerator.
Tap for more steps...
Step 3.2.5.1
Multiply by .
Step 3.2.5.2
Add and .
Step 3.2.6
The final answer is .
Step 3.3
Convert to decimal.
Step 4
Find the point at .
Tap for more steps...
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Multiply by .
Step 4.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.3
Combine and .
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
Simplify the numerator.
Tap for more steps...
Step 4.2.5.1
Multiply by .
Step 4.2.5.2
Add and .
Step 4.2.6
The final answer is .
Step 4.3
Convert to decimal.
Step 5
The log function can be graphed using the vertical asymptote at and the points .
Vertical Asymptote:
Step 6