Enter a problem...
Trigonometry Examples
y=cot(π2(x))
Step 1
Step 1.1
For any y=cot(x), vertical asymptotes occur at x=nπ, where n is an integer. Use the basic period for y=cot(x), (0,π), to find the vertical asymptotes for y=cot(πx2). Set the inside of the cotangent function, bx+c, for y=acot(bx+c)+d equal to 0 to find where the vertical asymptote occurs for y=cot(πx2).
πx2=0
Step 1.2
Solve for x.
Step 1.2.1
Set the numerator equal to zero.
πx=0
Step 1.2.2
Divide each term in πx=0 by π and simplify.
Step 1.2.2.1
Divide each term in πx=0 by π.
πxπ=0π
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Cancel the common factor of π.
Step 1.2.2.2.1.1
Cancel the common factor.
πxπ=0π
Step 1.2.2.2.1.2
Divide x by 1.
x=0π
x=0π
x=0π
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Divide 0 by π.
x=0
x=0
x=0
x=0
Step 1.3
Set the inside of the cotangent function πx2 equal to π.
πx2=π
Step 1.4
Solve for x.
Step 1.4.1
Multiply both sides of the equation by 2π.
2π⋅πx2=2ππ
Step 1.4.2
Simplify both sides of the equation.
Step 1.4.2.1
Simplify the left side.
Step 1.4.2.1.1
Simplify 2π⋅πx2.
Step 1.4.2.1.1.1
Cancel the common factor of 2.
Step 1.4.2.1.1.1.1
Cancel the common factor.
2π⋅πx2=2ππ
Step 1.4.2.1.1.1.2
Rewrite the expression.
1π(πx)=2ππ
1π(πx)=2ππ
Step 1.4.2.1.1.2
Cancel the common factor of π.
Step 1.4.2.1.1.2.1
Factor π out of πx.
1π(π(x))=2ππ
Step 1.4.2.1.1.2.2
Cancel the common factor.
1π(πx)=2ππ
Step 1.4.2.1.1.2.3
Rewrite the expression.
x=2ππ
x=2ππ
x=2ππ
x=2ππ
Step 1.4.2.2
Simplify the right side.
Step 1.4.2.2.1
Cancel the common factor of π.
Step 1.4.2.2.1.1
Cancel the common factor.
x=2ππ
Step 1.4.2.2.1.2
Rewrite the expression.
x=2
x=2
x=2
x=2
x=2
Step 1.5
The basic period for y=cot(πx2) will occur at (0,2), where 0 and 2 are vertical asymptotes.
(0,2)
Step 1.6
Find the period π|b| to find where the vertical asymptotes exist.
Step 1.6.1
π2 is approximately 1.57079632 which is positive so remove the absolute value
ππ2
Step 1.6.2
Multiply the numerator by the reciprocal of the denominator.
π2π
Step 1.6.3
Cancel the common factor of π.
Step 1.6.3.1
Cancel the common factor.
π2π
Step 1.6.3.2
Rewrite the expression.
2
2
2
Step 1.7
The vertical asymptotes for y=cot(πx2) occur at 0, 2, and every 2n, where n is an integer.
x=2n
Step 1.8
Cotangent only has vertical asymptotes.
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: x=2n where n is an integer
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: x=2n where n is an integer
Step 2
Use the form acot(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1
b=π2
c=0
d=0
Step 3
Since the graph of the function cot does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 4
Step 4.1
The period of the function can be calculated using π|b|.
π|b|
Step 4.2
Replace b with π2 in the formula for period.
π|π2|
Step 4.3
π2 is approximately 1.57079632 which is positive so remove the absolute value
ππ2
Step 4.4
Multiply the numerator by the reciprocal of the denominator.
π2π
Step 4.5
Cancel the common factor of π.
Step 4.5.1
Cancel the common factor.
π2π
Step 4.5.2
Rewrite the expression.
2
2
2
Step 5
Step 5.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 5.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 0π2
Step 5.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 0(2π)
Step 5.4
Multiply 0 by 2π.
Phase Shift: 0
Phase Shift: 0
Step 6
List the properties of the trigonometric function.
Amplitude: None
Period: 2
Phase Shift: None
Vertical Shift: None
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Vertical Asymptotes: x=2n where n is an integer
Amplitude: None
Period: 2
Phase Shift: None
Vertical Shift: None
Step 8