Trigonometry Examples

Solve for x cot(x)^4-4cot(x)^2+3=0
cot4(x)-4cot2(x)+3=0cot4(x)4cot2(x)+3=0
Step 1
Factor the left side of the equation.
Tap for more steps...
Step 1.1
Rewrite cot4(x)cot4(x) as (cot2(x))2(cot2(x))2.
(cot2(x))2-4cot2(x)+3=0(cot2(x))24cot2(x)+3=0
Step 1.2
Let u=cot2(x)u=cot2(x). Substitute uu for all occurrences of cot2(x)cot2(x).
u2-4u+3=0u24u+3=0
Step 1.3
Factor u2-4u+3u24u+3 using the AC method.
Tap for more steps...
Step 1.3.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 33 and whose sum is -44.
-3,-13,1
Step 1.3.2
Write the factored form using these integers.
(u-3)(u-1)=0(u3)(u1)=0
(u-3)(u-1)=0(u3)(u1)=0
Step 1.4
Replace all occurrences of uu with cot2(x)cot2(x).
(cot2(x)-3)(cot2(x)-1)=0(cot2(x)3)(cot2(x)1)=0
(cot2(x)-3)(cot2(x)-1)=0(cot2(x)3)(cot2(x)1)=0
Step 2
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
cot2(x)-3=0cot2(x)3=0
cot2(x)-1=0cot2(x)1=0
Step 3
Set cot2(x)-3cot2(x)3 equal to 00 and solve for xx.
Tap for more steps...
Step 3.1
Set cot2(x)-3cot2(x)3 equal to 00.
cot2(x)-3=0cot2(x)3=0
Step 3.2
Solve cot2(x)-3=0cot2(x)3=0 for xx.
Tap for more steps...
Step 3.2.1
Add 33 to both sides of the equation.
cot2(x)=3cot2(x)=3
Step 3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
cot(x)=±3cot(x)=±3
Step 3.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.2.3.1
First, use the positive value of the ±± to find the first solution.
cot(x)=3cot(x)=3
Step 3.2.3.2
Next, use the negative value of the ±± to find the second solution.
cot(x)=-3cot(x)=3
Step 3.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
cot(x)=3,-3cot(x)=3,3
cot(x)=3,-3cot(x)=3,3
Step 3.2.4
Set up each of the solutions to solve for xx.
cot(x)=3cot(x)=3
cot(x)=-3cot(x)=3
Step 3.2.5
Solve for xx in cot(x)=3cot(x)=3.
Tap for more steps...
Step 3.2.5.1
Take the inverse cotangent of both sides of the equation to extract xx from inside the cotangent.
x=arccot(3)x=arccot(3)
Step 3.2.5.2
Simplify the right side.
Tap for more steps...
Step 3.2.5.2.1
The exact value of arccot(3)arccot(3) is π6π6.
x=π6x=π6
x=π6x=π6
Step 3.2.5.3
The cotangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from ππ to find the solution in the fourth quadrant.
x=π+π6x=π+π6
Step 3.2.5.4
Simplify π+π6π+π6.
Tap for more steps...
Step 3.2.5.4.1
To write ππ as a fraction with a common denominator, multiply by 6666.
x=π66+π6x=π66+π6
Step 3.2.5.4.2
Combine fractions.
Tap for more steps...
Step 3.2.5.4.2.1
Combine ππ and 6666.
x=π66+π6x=π66+π6
Step 3.2.5.4.2.2
Combine the numerators over the common denominator.
x=π6+π6x=π6+π6
x=π6+π6x=π6+π6
Step 3.2.5.4.3
Simplify the numerator.
Tap for more steps...
Step 3.2.5.4.3.1
Move 66 to the left of ππ.
x=6π+π6x=6π+π6
Step 3.2.5.4.3.2
Add 6π6π and ππ.
x=7π6x=7π6
x=7π6x=7π6
x=7π6x=7π6
Step 3.2.5.5
Find the period of cot(x)cot(x).
Tap for more steps...
Step 3.2.5.5.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 3.2.5.5.2
Replace bb with 11 in the formula for period.
π|1|π|1|
Step 3.2.5.5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
π1π1
Step 3.2.5.5.4
Divide ππ by 11.
ππ
ππ
Step 3.2.5.6
The period of the cot(x)cot(x) function is ππ so values will repeat every ππ radians in both directions.
x=π6+πn,7π6+πnx=π6+πn,7π6+πn, for any integer nn
x=π6+πn,7π6+πnx=π6+πn,7π6+πn, for any integer nn
Step 3.2.6
Solve for xx in cot(x)=-3cot(x)=3.
Tap for more steps...
Step 3.2.6.1
Take the inverse cotangent of both sides of the equation to extract xx from inside the cotangent.
x=arccot(-3)x=arccot(3)
Step 3.2.6.2
Simplify the right side.
Tap for more steps...
Step 3.2.6.2.1
The exact value of arccot(-3)arccot(3) is 5π65π6.
x=5π6x=5π6
x=5π6x=5π6
Step 3.2.6.3
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from ππ to find the solution in the third quadrant.
x=5π6-πx=5π6π
Step 3.2.6.4
Simplify the expression to find the second solution.
Tap for more steps...
Step 3.2.6.4.1
Add 2π2π to 5π6-π5π6π.
x=5π6-π+2πx=5π6π+2π
Step 3.2.6.4.2
The resulting angle of 11π611π6 is positive and coterminal with 5π6-π5π6π.
x=11π6x=11π6
x=11π6x=11π6
Step 3.2.6.5
Find the period of cot(x)cot(x).
Tap for more steps...
Step 3.2.6.5.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 3.2.6.5.2
Replace bb with 11 in the formula for period.
π|1|π|1|
Step 3.2.6.5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
π1π1
Step 3.2.6.5.4
Divide ππ by 11.
ππ
ππ
Step 3.2.6.6
The period of the cot(x)cot(x) function is ππ so values will repeat every ππ radians in both directions.
x=5π6+πn,11π6+πnx=5π6+πn,11π6+πn, for any integer nn
x=5π6+πn,11π6+πnx=5π6+πn,11π6+πn, for any integer nn
Step 3.2.7
List all of the solutions.
x=π6+πn,7π6+πn,5π6+πn,11π6+πnx=π6+πn,7π6+πn,5π6+πn,11π6+πn, for any integer nn
Step 3.2.8
Consolidate the solutions.
Tap for more steps...
Step 3.2.8.1
Consolidate π6+πnπ6+πn and 7π6+πn7π6+πn to π6+πnπ6+πn.
x=π6+πn,5π6+πn,11π6+πnx=π6+πn,5π6+πn,11π6+πn, for any integer nn
Step 3.2.8.2
Consolidate 5π6+πn5π6+πn and 11π6+πn11π6+πn to 5π6+πn5π6+πn.
x=π6+πn,5π6+πnx=π6+πn,5π6+πn, for any integer nn
x=π6+πn,5π6+πnx=π6+πn,5π6+πn, for any integer nn
x=π6+πn,5π6+πnx=π6+πn,5π6+πn, for any integer nn
x=π6+πn,5π6+πnx=π6+πn,5π6+πn, for any integer nn
Step 4
Set cot2(x)-1cot2(x)1 equal to 00 and solve for xx.
Tap for more steps...
Step 4.1
Set cot2(x)-1cot2(x)1 equal to 00.
cot2(x)-1=0cot2(x)1=0
Step 4.2
Solve cot2(x)-1=0cot2(x)1=0 for xx.
Tap for more steps...
Step 4.2.1
Add 11 to both sides of the equation.
cot2(x)=1cot2(x)=1
Step 4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
cot(x)=±1cot(x)=±1
Step 4.2.3
Any root of 11 is 11.
cot(x)=±1cot(x)=±1
Step 4.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.2.4.1
First, use the positive value of the ±± to find the first solution.
cot(x)=1cot(x)=1
Step 4.2.4.2
Next, use the negative value of the ±± to find the second solution.
cot(x)=-1cot(x)=1
Step 4.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
cot(x)=1,-1cot(x)=1,1
cot(x)=1,-1cot(x)=1,1
Step 4.2.5
Set up each of the solutions to solve for xx.
cot(x)=1cot(x)=1
cot(x)=-1cot(x)=1
Step 4.2.6
Solve for xx in cot(x)=1cot(x)=1.
Tap for more steps...
Step 4.2.6.1
Take the inverse cotangent of both sides of the equation to extract xx from inside the cotangent.
x=arccot(1)x=arccot(1)
Step 4.2.6.2
Simplify the right side.
Tap for more steps...
Step 4.2.6.2.1
The exact value of arccot(1)arccot(1) is π4π4.
x=π4x=π4
x=π4x=π4
Step 4.2.6.3
The cotangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from ππ to find the solution in the fourth quadrant.
x=π+π4x=π+π4
Step 4.2.6.4
Simplify π+π4π+π4.
Tap for more steps...
Step 4.2.6.4.1
To write ππ as a fraction with a common denominator, multiply by 4444.
x=π44+π4x=π44+π4
Step 4.2.6.4.2
Combine fractions.
Tap for more steps...
Step 4.2.6.4.2.1
Combine ππ and 4444.
x=π44+π4x=π44+π4
Step 4.2.6.4.2.2
Combine the numerators over the common denominator.
x=π4+π4x=π4+π4
x=π4+π4x=π4+π4
Step 4.2.6.4.3
Simplify the numerator.
Tap for more steps...
Step 4.2.6.4.3.1
Move 44 to the left of ππ.
x=4π+π4x=4π+π4
Step 4.2.6.4.3.2
Add 4π4π and ππ.
x=5π4x=5π4
x=5π4x=5π4
x=5π4x=5π4
Step 4.2.6.5
Find the period of cot(x)cot(x).
Tap for more steps...
Step 4.2.6.5.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 4.2.6.5.2
Replace bb with 11 in the formula for period.
π|1|π|1|
Step 4.2.6.5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
π1π1
Step 4.2.6.5.4
Divide ππ by 11.
ππ
ππ
Step 4.2.6.6
The period of the cot(x)cot(x) function is ππ so values will repeat every ππ radians in both directions.
x=π4+πn,5π4+πnx=π4+πn,5π4+πn, for any integer nn
x=π4+πn,5π4+πnx=π4+πn,5π4+πn, for any integer nn
Step 4.2.7
Solve for xx in cot(x)=-1cot(x)=1.
Tap for more steps...
Step 4.2.7.1
Take the inverse cotangent of both sides of the equation to extract xx from inside the cotangent.
x=arccot(-1)x=arccot(1)
Step 4.2.7.2
Simplify the right side.
Tap for more steps...
Step 4.2.7.2.1
The exact value of arccot(-1)arccot(1) is 3π43π4.
x=3π4x=3π4
x=3π4x=3π4
Step 4.2.7.3
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from π to find the solution in the third quadrant.
x=3π4-π
Step 4.2.7.4
Simplify the expression to find the second solution.
Tap for more steps...
Step 4.2.7.4.1
Add 2π to 3π4-π.
x=3π4-π+2π
Step 4.2.7.4.2
The resulting angle of 7π4 is positive and coterminal with 3π4-π.
x=7π4
x=7π4
Step 4.2.7.5
Find the period of cot(x).
Tap for more steps...
Step 4.2.7.5.1
The period of the function can be calculated using π|b|.
π|b|
Step 4.2.7.5.2
Replace b with 1 in the formula for period.
π|1|
Step 4.2.7.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
π1
Step 4.2.7.5.4
Divide π by 1.
π
π
Step 4.2.7.6
The period of the cot(x) function is π so values will repeat every π radians in both directions.
x=3π4+πn,7π4+πn, for any integer n
x=3π4+πn,7π4+πn, for any integer n
Step 4.2.8
List all of the solutions.
x=π4+πn,5π4+πn,3π4+πn,7π4+πn, for any integer n
Step 4.2.9
Consolidate the answers.
x=π4+πn2, for any integer n
x=π4+πn2, for any integer n
x=π4+πn2, for any integer n
Step 5
The final solution is all the values that make (cot2(x)-3)(cot2(x)-1)=0 true.
x=π6+πn,5π6+πn,π4+πn2, for any integer n
 [x2  12  π  xdx ]