Enter a problem...
Trigonometry Examples
Step 1
Multiply both sides by .
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify .
Step 2.1.1.1
Cancel the common factor of .
Step 2.1.1.1.1
Cancel the common factor.
Step 2.1.1.1.2
Rewrite the expression.
Step 2.1.1.2
Rewrite in terms of sines and cosines.
Step 2.1.1.3
Combine and .
Step 2.1.1.4
Separate fractions.
Step 2.1.1.5
Convert from to .
Step 2.1.1.6
Divide by .
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite in terms of sines and cosines.
Step 2.2.1.1.2
Rewrite in terms of sines and cosines.
Step 2.2.1.2
Expand using the FOIL Method.
Step 2.2.1.2.1
Apply the distributive property.
Step 2.2.1.2.2
Apply the distributive property.
Step 2.2.1.2.3
Apply the distributive property.
Step 2.2.1.3
Simplify and combine like terms.
Step 2.2.1.3.1
Simplify each term.
Step 2.2.1.3.1.1
Combine and .
Step 2.2.1.3.1.2
Rewrite using the commutative property of multiplication.
Step 2.2.1.3.1.3
Cancel the common factor of .
Step 2.2.1.3.1.3.1
Move the leading negative in into the numerator.
Step 2.2.1.3.1.3.2
Cancel the common factor.
Step 2.2.1.3.1.3.3
Rewrite the expression.
Step 2.2.1.3.1.4
Cancel the common factor of .
Step 2.2.1.3.1.4.1
Cancel the common factor.
Step 2.2.1.3.1.4.2
Rewrite the expression.
Step 2.2.1.3.1.5
Rewrite using the commutative property of multiplication.
Step 2.2.1.3.1.6
Combine and .
Step 2.2.1.3.2
Add and .
Step 2.2.1.3.3
Add and .
Step 2.2.1.4
Simplify each term.
Step 2.2.1.4.1
Convert from to .
Step 2.2.1.4.2
Convert from to .
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify .
Step 3.1.1.1
Rewrite in terms of sines and cosines.
Step 3.1.1.2
Combine and .
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Rewrite in terms of sines and cosines.
Step 3.2.1.2
Rewrite in terms of sines and cosines.
Step 3.3
Multiply both sides of the equation by .
Step 3.4
Cancel the common factor of .
Step 3.4.1
Cancel the common factor.
Step 3.4.2
Rewrite the expression.
Step 3.5
Apply the distributive property.
Step 3.6
Combine and .
Step 3.7
Rewrite using the commutative property of multiplication.
Step 3.8
Simplify each term.
Step 3.8.1
Simplify the numerator.
Step 3.8.1.1
Apply the sine double-angle identity.
Step 3.8.1.2
Combine exponents.
Step 3.8.1.2.1
Raise to the power of .
Step 3.8.1.2.2
Raise to the power of .
Step 3.8.1.2.3
Use the power rule to combine exponents.
Step 3.8.1.2.4
Add and .
Step 3.8.2
Cancel the common factor of .
Step 3.8.2.1
Cancel the common factor.
Step 3.8.2.2
Divide by .
Step 3.8.3
Combine and .
Step 3.8.4
Simplify the numerator.
Step 3.8.4.1
Apply the sine double-angle identity.
Step 3.8.4.2
Combine exponents.
Step 3.8.4.2.1
Raise to the power of .
Step 3.8.4.2.2
Raise to the power of .
Step 3.8.4.2.3
Use the power rule to combine exponents.
Step 3.8.4.2.4
Add and .
Step 3.8.5
Cancel the common factor of .
Step 3.8.5.1
Cancel the common factor.
Step 3.8.5.2
Divide by .
Step 3.8.6
Multiply by .
Step 3.9
Move all the expressions to the left side of the equation.
Step 3.9.1
Subtract from both sides of the equation.
Step 3.9.2
Add to both sides of the equation.
Step 3.10
Use the double-angle identity to transform to .
Step 3.11
Simplify the left side.
Step 3.11.1
Simplify .
Step 3.11.1.1
Simplify with factoring out.
Step 3.11.1.1.1
Factor out of .
Step 3.11.1.1.1.1
Factor out of .
Step 3.11.1.1.1.2
Factor out of .
Step 3.11.1.1.1.3
Factor out of .
Step 3.11.1.1.1.4
Factor out of .
Step 3.11.1.1.2
Move .
Step 3.11.1.2
Apply pythagorean identity.
Step 3.11.1.3
Simplify by adding terms.
Step 3.11.1.3.1
Subtract from .
Step 3.11.1.3.2
Add and .
Step 3.11.1.3.3
Multiply by .
Step 3.12
Since , the equation will always be true for any value of .
All real numbers
All real numbers
Step 4
The result can be shown in multiple forms.
All real numbers
Interval Notation: